Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_4_a13, author = {M. M. Buzmakova}, title = {Percolation of the prolate ellipsoids of rotation in the continuum}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {146--153}, publisher = {mathdoc}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a13/} }
TY - JOUR AU - M. M. Buzmakova TI - Percolation of the prolate ellipsoids of rotation in the continuum JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 146 EP - 153 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a13/ LA - ru ID - VSGTU_2012_4_a13 ER -
%0 Journal Article %A M. M. Buzmakova %T Percolation of the prolate ellipsoids of rotation in the continuum %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 146-153 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a13/ %G ru %F VSGTU_2012_4_a13
M. M. Buzmakova. Percolation of the prolate ellipsoids of rotation in the continuum. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2012), pp. 146-153. http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a13/
[1] Stauffer D., Aharony A., Introduction to Percolation Theory, Taylor Francis, London, 1992, 181 pp.
[2] Sahimi M., Application of Percolation Theory, Taylor Francis, London, 1994, 258 pp.
[3] Ohira K., Sato M., Kohmoto M., “Fluctuations in chemical gelation”, Phys. Rev. E, 75:4 (2007), 041402, 6 pp., arXiv: [cond-mat.soft] cond-mat/0510106 | DOI
[4] Del Gado E., Fierro A., de Arcangelis L., Coniglio A., “Slow dynamics in gelation phenomena: From chemical gels to colloidal glasses”, Phys. Rev. E, 69:5 (2004), 051103, 9 pp., arXiv: [cond-mat.soft] cond-mat/0310776 | DOI | MR
[5] Plischke M., Vernon D. C., Joóc B., “Model for gelation with explicit solvent effects: Structure and dynamics”, Phys. Rev. E, 67:1 (2003), 011401, 6 pp., arXiv: [cond-mat.soft] cond-mat/0207304 | DOI
[6] Garboczi E. J., Snyder K. A., Douglas J. F., Thorpe M. F., “Geometrical percolation threshold of overlapping ellipsoids”, Phys. Rev. E, 52:1 (1995), 819–828 | DOI
[7] Yi. Y. B., “Void percolation and conduction of overlapping ellipsoids”, Phys. Rev. E, 74:3 (2006), 031112, 6 pp. | DOI
[8] Akagawa S., Odagaki T., “Geometrical percolation of hard-core ellipsoids of revolution in the continuum”, Phys. Rev. E, 76:5 (2007), 051402, 5 pp. | DOI
[9] Ambrosetti G., Johner N. , Grimaldi C., Danani A., Ryser P., “Percolative properties of hard oblate ellipsoids of revolution witha soft shell”, Phys. Rev. E, 78:6 (2008), 061126, 11 pp., arXiv: [cond-mat.stat-mech] 0805.1181 | DOI
[10] Matsumoto M., Nishimura T., “Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator”, ACM Trans. Model. Comput. Simul., 8:1 (1998), 3–30 | DOI | Zbl
[11] Hoshen J., Kopelman R., “Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm”, Phys. Rev. B, 14:8 (1976), 3438–3445 | DOI
[12] Rubin F., “The Lee path connection algorithm”, IEEE Trans. Computers, C-23:9 (1974), 907–914 | DOI | MR
[13] Tarasevich Yu. Yu., Percolation. Theory, applications, algorithms, Editorial URSS, Moscow, 2002, 112 pp.
[14] Balberg I., Binenbaum N., “Invariant properties of the percolation thresholds in the soft-core–hard-core transition”, Phys. Rev. A, 35:12 (1987), 5174–5177 | DOI
[15] Goncharuk A. I., Lebovka N. I., Lisetski L. N., Minenko S. S., “Aggregation, percolation and phase transitions in nematic liquid crystal EBBA doped with carbon nanotubes”, J. Phys. D: Appl. Phys., 42:16 (2009), 165411, 8 pp. | DOI