Boundary value problem for the flexible axially loaded compound shells of revolution and beams systems
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2012), pp. 122-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

The effective algorithm of static calculation of geometrically nonlinear compound thin structures is offered. Linear differential equations of moment theory are used. Nonlinearity is considered by assigning unknown initial angular displacement of each segment retaining the form of the generating line. Unknown values of algebraic equations resolving system are the arbitrary constants of the general solution and the initial angles of generating lines rotation. Linearization is realized by Newton–Raphson iterative method and provides the high precision of results.
Keywords: geometrical nonlinearity, beam, shell of revolution, angular deflection, differential equations, iterative calculation.
@article{VSGTU_2012_4_a11,
     author = {E. Ya. Elenitsky},
     title = {Boundary value problem for the flexible axially loaded compound shells of revolution and beams systems},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {122--130},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a11/}
}
TY  - JOUR
AU  - E. Ya. Elenitsky
TI  - Boundary value problem for the flexible axially loaded compound shells of revolution and beams systems
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 122
EP  - 130
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a11/
LA  - ru
ID  - VSGTU_2012_4_a11
ER  - 
%0 Journal Article
%A E. Ya. Elenitsky
%T Boundary value problem for the flexible axially loaded compound shells of revolution and beams systems
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 122-130
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a11/
%G ru
%F VSGTU_2012_4_a11
E. Ya. Elenitsky. Boundary value problem for the flexible axially loaded compound shells of revolution and beams systems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2012), pp. 122-130. http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a11/

[1] Karmishin A. V., Lyaskovets V. A., Myachenkov V. I., Frolov A. N., Statics and dynamics of thin-wall shell-type structures, Mashinostroenie, Moscow, 1975, 376 pp.

[2] Valishvili N. V., Methods of analyzing shells of revolution on a digital computer, Mashinostroenie, 1976, 279 pp.

[3] Timoshenko S. P., Woinowsky–Krieger S., Theory of Plates and Shells, McGraw-Hill, New York, 1959, 595 pp.; Timoshenko S. P., Voinovskii"– Kriger S., Plastiny i obolochki, Nauka, M., 1966, 636 pp.

[4] Smirnov A. F., Aleksandrov A. V., Lashchenikov B. Ya., Shaposhnikov N. N., Civil engineering mechanics. Thin-walled spatial systems, ed. A. F. Smirnov, Stroyizdat, Moscow, 1983, 488 pp.

[5] Yelenitskiy E. Ya., “The calculation of free oscillations for prismatic systems with distributed parameters”, Izv. Vuzov. Stroitel'stvo, 1996, no. 7, 26–31

[6] Lukash P. A., Basis of nonlinear civil engineering mechanics, Stroyizdat, Moscow, 1978, 204 pp.

[7] Vol'mir A. S., Stability of Deformable Systems, Nauka, Moscow, 1967, 984 pp.

[8] Grigoluk É. I., “On the question of circular plate behavior after buckling”, Vestnik Inzhenerov i Tekhnikov, 1949, no. 3, 103–106