Transition disorder--order--disorder in reaction-diffusion biophysical system
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2012), pp. 81-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

The evolution of spatial pattern formation, which arises in the biophysical system of reaction-diffusion type in external noise, is researched analytically. The behavior of the probability density of the order parameter, its mean and the most probable values, susceptibility and second-order cumulant as a function of external noise intensity are studied in the statistically steady state. The boundary of transition “order-disorder” is defined. It is shown that there is a sequence of noise-induced ordering and disordering transitions in this system.
Mots-clés : reaction-diffusion system, external noise
Keywords: nonequilibrium phase transitions, order parameters.
@article{VSGTU_2012_3_a7,
     author = {V. V. Maksimov},
     title = {Transition disorder--order--disorder in reaction-diffusion biophysical system},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {81--87},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a7/}
}
TY  - JOUR
AU  - V. V. Maksimov
TI  - Transition disorder--order--disorder in reaction-diffusion biophysical system
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 81
EP  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a7/
LA  - ru
ID  - VSGTU_2012_3_a7
ER  - 
%0 Journal Article
%A V. V. Maksimov
%T Transition disorder--order--disorder in reaction-diffusion biophysical system
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 81-87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a7/
%G ru
%F VSGTU_2012_3_a7
V. V. Maksimov. Transition disorder--order--disorder in reaction-diffusion biophysical system. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2012), pp. 81-87. http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a7/

[1] Horsthemke W., Lefever M., Noise-induced Transition, Springer, Berlin, 1984, 318 pp. | MR | Zbl

[2] Garcia-Ojalvo J., Sancho J. M., Noise in Spatially Extended Systems, Springer Verlag, New York, 1999, 307 pp. | MR | Zbl

[3] Lindner B., García-Ojalvo J., Neimand A., Schimansky-Geiere L., “Effects of noise in excitable systems”, Phys. Rept., 392:6 (2004), 321–424 | DOI | MR

[4] Haken H., Synergetics, Springer, Berlin, 2004, 758 pp. | MR

[5] Gardiner C., Handbook of Stochastic Methods: for Physics, Chemistry and the Natural Sciences, Springer, Berlin, 2004, 424 pp. | MR

[6] Valenti D., Schimansky-Geier L., Sailer X., Spagnolo B., “Moment equations for a spatially extended system of to competing species”, Eur. Phys. J. B, 50:1–2 (2006), 199–203 | DOI

[7] Hutt A., Longtin A., Schimansky-Geier L., “Additive noise-induced Turing transitions in spatial systems with application to neural fields and the Swift–Hohenberg equation”, Physica D, 237:6 (2008), 755–773 | DOI | MR | Zbl

[8] Kurushina S. E., Gromova L. I., Maksimov V. V., “Stochastic equations and the Fokker-Planck equation for order parameters for studying of dynamics noise-induced spatial dissipative structures”, Izv. Vuzov. Prikladnaya Nelineynaya Dinamika, 19:5 (2011), 45–63

[9] Kurushina S. E., Zhelnov Yu. V., Zavershinskii I. P., Maximov V. V., “Pattern formation in two-component reaction-diffusion systems in fluctuate environment”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1(20), 143–153 | DOI

[10] Kurushina S. E., Ivanov A. A., Zhelnov Yu. V., Zavershinskii I. P., Maximov V. V., “Autowave structures in fluctuating external environment”, Izv. SNC RAN, 12:4 (2010), 41–50

[11] Kurushina S. E., Ivanov A. A., Zhelnov Yu. V., Zavershinskii I. P., Maksimov V. V., “Modeling spatial-temporal structures in a predator-prey system in an external fluctuating environment”, Matem. Modelirovanie, 22:10 (2010), 3–17 | MR | Zbl

[12] Scheffer M., “Fish and nutrients interplay determines algal biomass: a minimal model”, OIKOS, 62:3 (1991), 271–282 | DOI

[13] Malchow H., “Motional instabilities in prey-predator systems”, J. Theor. Biol., 204:4 (2000), 639–647 | DOI

[14] Malchow H., “Spatiotemporal pattern formation in nonlinear non-equilibrium plankton dynamics”, Procc. R. Soc. Lond. B, 251:1331 (1993), 103–109 | DOI

[15] Van den Broeck C., Parrondo J. M. R. Toral R., Kawai R., “Nonequilibrium phase transitions induced by multiplicative noise”, Phys. Rev. E, 55:4 (1997), 4084–4094 | DOI