Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_3_a4, author = {E. A. Kozlova}, title = {Damping problem for the special class of the second order hyperbolic systems}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {47--52}, publisher = {mathdoc}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a4/} }
TY - JOUR AU - E. A. Kozlova TI - Damping problem for the special class of the second order hyperbolic systems JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 47 EP - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a4/ LA - ru ID - VSGTU_2012_3_a4 ER -
%0 Journal Article %A E. A. Kozlova %T Damping problem for the special class of the second order hyperbolic systems %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 47-52 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a4/ %G ru %F VSGTU_2012_3_a4
E. A. Kozlova. Damping problem for the special class of the second order hyperbolic systems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2012), pp. 47-52. http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a4/
[1] Bitsadze A. V., Some classes of partial differential equations, Nauka, Moscow, 1981, 448 pp. | MR | Zbl
[2] Gantmakher F. R., Theory of matrices, Nauka, Moscow, 1988, 549 pp. | MR | Zbl
[3] Kozlova E. A., “Damping problem for the hyperbolic equation with mixed derivative”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 4(25) (2011), 37–42 | DOI
[4] Kozlova E. A., “Control problem for the hyperbolic equation with the characteristics having the angular coefficients of the same sign”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 1(26), 243–247 | DOI
[5] Il'in V. A., “Boundary control of oscillations on two ends in terms of the generalized solution of the wave equation with finite energy”, Differ. Equ., 36:11 (2000), 1659–1675 | DOI | MR | Zbl
[6] Il'in V. A., Moiseev E. I., “Boundary control at two endpoints of a process described by the telegraph equation”, Dokl. Akad. Nauk, 394:2 (2004), 154–158 | MR | Zbl
[7] Andreev A. A., Leksina S. V., “Boundary control problem for the first boundary value problem for a second-order system of hyperbolic type”, Differ. Equ., 47:6 (2011), 848–854 | DOI | MR | Zbl
[8] Svetlitskiy B. A., Mechanics of Flexible Rods and Threads, Mashinostroenie, Moscow, 1978, 224 pp.
[9] Skorobogat'ko V. Ja., Investigation in the qualitative theory of partial differential equations, Naukova Dumka, Kiev, 1980, 244 pp. | MR | Zbl