A problem with M.~Saigo operator in the boundary condition for a~loaded heat conduction equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2012), pp. 41-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of a unique solution of the non-classical boundary value problem for the heat equation, the loaded value of the desired function $u(x,y)$ on the boundary $x=0$ of the rectangular area $ \Omega = \{ (x,t): 0 x l, 0 t T \}$ was proved. One of the boundary conditions of the problem has a generalized operator of fractional integro-differentiation in the sense of Saigo. Using the properties of the Green function of the mixed boundary value problem and the specified boundary condition, the problem reduces to an integral equation of Volterra type with respect to the trace of the desired function $u(0, t)$. It is shown that the equation is Volterra integral equation of the second kind with weak singularity in the kernel, which is unambiguously and unconditionally solvable. The main result is given in the form of the theorem. The special case is considered, where the generalized operator of fractional integro-differentiation of M. Saigo in the boundary condition reduces to the operator of Kober–Erdeyi. In this case, the existence of an unique solution of the boundary value problem is justified.
Keywords: loaded heat equation, generalized operator of fractional integro-differentiation, Green function, Volterra integral equations.
@article{VSGTU_2012_3_a3,
     author = {A. V. Tarasenko},
     title = {A problem with {M.~Saigo} operator in the boundary condition for a~loaded heat conduction equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {41--46},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a3/}
}
TY  - JOUR
AU  - A. V. Tarasenko
TI  - A problem with M.~Saigo operator in the boundary condition for a~loaded heat conduction equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 41
EP  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a3/
LA  - ru
ID  - VSGTU_2012_3_a3
ER  - 
%0 Journal Article
%A A. V. Tarasenko
%T A problem with M.~Saigo operator in the boundary condition for a~loaded heat conduction equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 41-46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a3/
%G ru
%F VSGTU_2012_3_a3
A. V. Tarasenko. A problem with M.~Saigo operator in the boundary condition for a~loaded heat conduction equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2012), pp. 41-46. http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a3/

[1] Saigo M. A., “A certain boundary value problem for the Euler–Darboux equation”, Math. Jap., 24:4 (1979), 377–385 | MR | Zbl

[2] Kerefov A. A., Kumyshev R. M., “On boundary value problems for a loaded heat conduction equation”, Dokl. AMAN, 2:1 (1996), 13–15

[3] Bers L., John F., Shehter M., Partial differential equations, Mir, Moscow, 1966, 351 pp. | MR | Zbl

[4] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, ed. H. Bateman, McGraw-Hill Book Co, Inc., New York – Toronto – London, 1953, 302 pp. ; Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. V 3-kh t. , v. 1, Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973, 296 pp. | Zbl

[5] Manzhirov A. V., Polyanin A. D., Handbook of Integral Equations: Solution Methods, Factorial Press, Moscow, 2000, 384 pp.

[6] Nakhushev A. M., Fractional calculus and its applications, Fizmatlit, Moscow, 2003, 271 pp. | Zbl