Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_3_a2, author = {E. N. Ogorodnikov}, title = {Two special functions, generalizing the {Mittag--Leffler} type function, in solutions of~integral and differential equations with {Riemann-Liouville} and {Kober} operators}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {30--40}, publisher = {mathdoc}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a2/} }
TY - JOUR AU - E. N. Ogorodnikov TI - Two special functions, generalizing the Mittag--Leffler type function, in solutions of~integral and differential equations with Riemann-Liouville and Kober operators JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 30 EP - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a2/ LA - ru ID - VSGTU_2012_3_a2 ER -
%0 Journal Article %A E. N. Ogorodnikov %T Two special functions, generalizing the Mittag--Leffler type function, in solutions of~integral and differential equations with Riemann-Liouville and Kober operators %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 30-40 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a2/ %G ru %F VSGTU_2012_3_a2
E. N. Ogorodnikov. Two special functions, generalizing the Mittag--Leffler type function, in solutions of~integral and differential equations with Riemann-Liouville and Kober operators. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2012), pp. 30-40. http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a2/
[1] Ogorodnikov E. N., “On two special functions that generalize the Mittag–Leffler type function, their properties and applications”, The Second International Conference “Mathematical Physics and Its Applications”, Proc. of International Conf. (Samara, August 27 – September 2, 2012.), Kniga, Samara, 2010, 248–249
[2] Kilbas A. A., Saigo M., “On solution of integral equation of Abel–Volterra type”, Diff. Integr. Equat., 8:5 (1995), 547–576 | MR
[3] Kilbas A. A., Saigo M., “On Mittag–Leffler type function, fractional calculus operators and solutions of integral equations”, Integral Transform. Spec. Funct., 4:4 (1996), 335–370 | DOI | MR
[4] Gorenflo R., Kilbas A. A., Rogozin S. V., “On the generalized Mittag–Leffler type function”, Integral Transform. Spec. Funct., 7:3–4 (1998), 215–224 | DOI | MR | Zbl
[5] Gorenflo R., Kilbas A. A., Rogozin S. V., “On the properties of a generalized Mittag–Leffler type function”, Dokl. Nats. Akad. Nauk Belarusi, 42:5 (1998), 34–39 | MR | Zbl
[6] Kilbas A. A., Srivastava H. M., Trujillo J. J., “Theory and Applications of Fractional Differential Equations”, North-Holland Mathematics Studies, 204, ed. J. van Mill, Elsevier, Amsterdam, 2006, 523 | MR | Zbl
[7] Ogorodnikov E. N., “A nonlocal boundary value problems for one model parabolic-hyperbolic equation with fractional derivative”, Proceedings of the Fourth All-Russian Scientific Conference with international participation (29–31 May 2007). Part 3, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2007, 147–152
[8] Ogorodnikov E. N., “On two special functions, generalizing the Mittag–Laffler type function, their properties and applications”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 1(26), 52–65 | DOI
[9] Samko S. G., Kilbas A. A., Marichev O. I., Integrals and Derivatives of Fractional Order and Some of Their Applications, Nauka i Tekhnika, Minsk, 1987, 688 pp. | MR | Zbl
[10] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, ed. H. Bateman, McGraw-Hill Book Co, Inc., New York – Toronto – London, 1953, 302 pp. ; Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. V 3-kh t, v. 1, Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973, 296 pp. | MR | Zbl | MR
[11] Kolmogorov A. N., Fomin S. V., Elements of the Theory of Functions and Functional Analysis, Nauka, Moscow, 1976, 543 pp. | MR
[12] Nakhushev A. M., “Inverse problems for degenerating equations and Volterra integral equations of the third kind”, Differents. Uravneniya, 10:1, 100–111
[13] Nakhushev A. M., Fractional Calculus and its Applications, Fizmatlit, Moscow, 2003, 272 pp. | Zbl
[14] Ogorodnikov E. N., “Some Aspects of Initial Value Problems Theory for Differential Equations with Riemann–Liouville Derivatives”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1(21), 10–23 | DOI
[15] Mikhailov L. G., Integral Equations with Kernels Homogeneous of Degree $-1$, Donish, Dushanbe, 1966, 50 pp.
[16] Barrett I. N., “Differential equations of non-integer oder”, Canad. J. Math, 6:4 (1954), 529–541 | DOI | MR | Zbl
[17] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. III, ed. H. Bateman, McGraw-Hill Book Co, Inc., New York – Toronto – London, 1955, 292 pp. ; Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. V 3-kh t, v. 3, Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1973, 299 pp. | Zbl | MR
[18] Dzhrbashyan M. M., Integral transforms and representations of functions in complex domain, Nauka, Moscow, 1966, 672 pp. | MR
[19] Ogorodnikov E. N., “On the Cauchy problem for the model differential equations of fractional oscillator”, Modern Problems of Computational Mathematics and Mathematical Physics, VMK MGU; Maks Press, Moscow, 2009, 229–231
[20] Ogorodnikov E. N., Yashagin N. S., “Some special functions in the solution to Cauchy problem for a fractional oscillating equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 1(18), 276–279 | DOI