Two special functions, generalizing the Mittag--Leffler type function, in solutions of~integral and differential equations with Riemann-Liouville and Kober operators
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2012), pp. 30-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two special functions, concerning Mittag–Leffler type functions, are considered. The first is the modification of generalized Mittag–Leffler type function, introduced by A. A. Kilbas and M. Saigo; the second is the special case of the first one. The solutions of the integral equation with the Kober operator and the generalized power series as the free term are presented. The existence and uniqueness of these solutions are proved. The explicit solutions of the integral equations above are found out in terms of introduced special functions. The correctness of initial value problems for linear homogeneous differential equations with Riemann–Liouville and Kober fractional derivatives is investigated. The solutions of the Cauchy type problems are found out in the special classes of functions with summable fractional derivative via the reduction to the considered above integral equation and also are written in the explicit form in terms of the introduced special functions. The replacement of the Cauchy type initial values to the modified (weight) Cauchy conditions is substantiated. The particular cases of parameters in the differential equations when the Cauchy type problems are not well-posed in sense of the uniqueness of solutions are considered. In these cases the unique solutions of the Cauchy weight problems are existed. It is noted in this paper that the weight Cauchy problems allow to expand the acceptable region of the parameters values in the differential equations to the case when the fractional derivative has the nonsummable singularity in zero.
Keywords: special functions, Mittag–Leffler type function, Riemann–Liouville integral and differential operators, fractional differential and integral equations, Cauchy type problems.
Mots-clés : fractional calculus
@article{VSGTU_2012_3_a2,
     author = {E. N. Ogorodnikov},
     title = {Two special functions, generalizing the {Mittag--Leffler} type function, in solutions of~integral and differential equations with {Riemann-Liouville} and {Kober} operators},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {30--40},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a2/}
}
TY  - JOUR
AU  - E. N. Ogorodnikov
TI  - Two special functions, generalizing the Mittag--Leffler type function, in solutions of~integral and differential equations with Riemann-Liouville and Kober operators
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 30
EP  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a2/
LA  - ru
ID  - VSGTU_2012_3_a2
ER  - 
%0 Journal Article
%A E. N. Ogorodnikov
%T Two special functions, generalizing the Mittag--Leffler type function, in solutions of~integral and differential equations with Riemann-Liouville and Kober operators
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 30-40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a2/
%G ru
%F VSGTU_2012_3_a2
E. N. Ogorodnikov. Two special functions, generalizing the Mittag--Leffler type function, in solutions of~integral and differential equations with Riemann-Liouville and Kober operators. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2012), pp. 30-40. http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a2/

[1] Ogorodnikov E. N., “On two special functions that generalize the Mittag–Leffler type function, their properties and applications”, The Second International Conference “Mathematical Physics and Its Applications”, Proc. of International Conf. (Samara, August 27 – September 2, 2012.), Kniga, Samara, 2010, 248–249

[2] Kilbas A. A., Saigo M., “On solution of integral equation of Abel–Volterra type”, Diff. Integr. Equat., 8:5 (1995), 547–576 | MR

[3] Kilbas A. A., Saigo M., “On Mittag–Leffler type function, fractional calculus operators and solutions of integral equations”, Integral Transform. Spec. Funct., 4:4 (1996), 335–370 | DOI | MR

[4] Gorenflo R., Kilbas A. A., Rogozin S. V., “On the generalized Mittag–Leffler type function”, Integral Transform. Spec. Funct., 7:3–4 (1998), 215–224 | DOI | MR | Zbl

[5] Gorenflo R., Kilbas A. A., Rogozin S. V., “On the properties of a generalized Mittag–Leffler type function”, Dokl. Nats. Akad. Nauk Belarusi, 42:5 (1998), 34–39 | MR | Zbl

[6] Kilbas A. A., Srivastava H. M., Trujillo J. J., “Theory and Applications of Fractional Differential Equations”, North-Holland Mathematics Studies, 204, ed. J. van Mill, Elsevier, Amsterdam, 2006, 523 | MR | Zbl

[7] Ogorodnikov E. N., “A nonlocal boundary value problems for one model parabolic-hyperbolic equation with fractional derivative”, Proceedings of the Fourth All-Russian Scientific Conference with international participation (29–31 May 2007). Part 3, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2007, 147–152

[8] Ogorodnikov E. N., “On two special functions, generalizing the Mittag–Laffler type function, their properties and applications”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 1(26), 52–65 | DOI

[9] Samko S. G., Kilbas A. A., Marichev O. I., Integrals and Derivatives of Fractional Order and Some of Their Applications, Nauka i Tekhnika, Minsk, 1987, 688 pp. | MR | Zbl

[10] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, ed. H. Bateman, McGraw-Hill Book Co, Inc., New York – Toronto – London, 1953, 302 pp. ; Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. V 3-kh t, v. 1, Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973, 296 pp. | MR | Zbl | MR

[11] Kolmogorov A. N., Fomin S. V., Elements of the Theory of Functions and Functional Analysis, Nauka, Moscow, 1976, 543 pp. | MR

[12] Nakhushev A. M., “Inverse problems for degenerating equations and Volterra integral equations of the third kind”, Differents. Uravneniya, 10:1, 100–111

[13] Nakhushev A. M., Fractional Calculus and its Applications, Fizmatlit, Moscow, 2003, 272 pp. | Zbl

[14] Ogorodnikov E. N., “Some Aspects of Initial Value Problems Theory for Differential Equations with Riemann–Liouville Derivatives”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1(21), 10–23 | DOI

[15] Mikhailov L. G., Integral Equations with Kernels Homogeneous of Degree $-1$, Donish, Dushanbe, 1966, 50 pp.

[16] Barrett I. N., “Differential equations of non-integer oder”, Canad. J. Math, 6:4 (1954), 529–541 | DOI | MR | Zbl

[17] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. III, ed. H. Bateman, McGraw-Hill Book Co, Inc., New York – Toronto – London, 1955, 292 pp. ; Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. V 3-kh t, v. 3, Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1973, 299 pp. | Zbl | MR

[18] Dzhrbashyan M. M., Integral transforms and representations of functions in complex domain, Nauka, Moscow, 1966, 672 pp. | MR

[19] Ogorodnikov E. N., “On the Cauchy problem for the model differential equations of fractional oscillator”, Modern Problems of Computational Mathematics and Mathematical Physics, VMK MGU; Maks Press, Moscow, 2009, 229–231

[20] Ogorodnikov E. N., Yashagin N. S., “Some special functions in the solution to Cauchy problem for a fractional oscillating equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 1(18), 276–279 | DOI