Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_3_a19, author = {D. K. Potapov}, title = {On the character of nonlinearity discontinuities in eigenvalue problems for elliptic equations}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {188--190}, publisher = {mathdoc}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a19/} }
TY - JOUR AU - D. K. Potapov TI - On the character of nonlinearity discontinuities in eigenvalue problems for elliptic equations JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 188 EP - 190 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a19/ LA - ru ID - VSGTU_2012_3_a19 ER -
%0 Journal Article %A D. K. Potapov %T On the character of nonlinearity discontinuities in eigenvalue problems for elliptic equations %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 188-190 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a19/ %G ru %F VSGTU_2012_3_a19
D. K. Potapov. On the character of nonlinearity discontinuities in eigenvalue problems for elliptic equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2012), pp. 188-190. http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a19/
[1] Pavlenko V. N., Potapov D. K., “Existence of a ray of eigenvalues for equations with discontinuous operators”, Siberian Math. J., 42:4 (2001), 766–773 | DOI | MR | Zbl
[2] Pavlenko V. N., Potapov D. K., “Approximation of boundary-value problems of elliptic type with a spectral parameter and discontinuous nonlinearity”, Russian Math. (Iz. VUZ), 49:4 (2005), 46–52 | MR | Zbl
[3] Potapov D. K., “On an upper bound for the value of the bifurcation parameter in eigenvalue problems for elliptic equations with discontinuous nonlinearities”, Differ. Equ., 44:5 (2008), 737–739 | DOI | MR | Zbl
[4] Potapov D. K., “On the eigenvalue set structure for higher-order equations of elliptic type with discontinuous nonlinearities”, Differ. Equ., 46:1 (2010), 155–157 | DOI | MR | Zbl
[5] Potapov D. K., “Estimations of a differential operator in spectral parameter problems for elliptic equations with discontinuous nonlinearities”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 5(21), 268–271 | DOI
[6] Potapov D. K., “Bifurcation problems for equations of elliptic type with discontinuous nonlinearities”, Math. Notes, 90:2 (2011), 260–264 | DOI | DOI | MR | Zbl
[7] Potapov D. K., “On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 1(26), 251–255 | DOI | MR
[8] Marano S. A., “Elliptic eigenvalue problems with highly discontinuous nonlinearities”, Proc. Amer. Math. Soc., 125:10 (1997), 2953–2961 | DOI | MR | Zbl
[9] Marano S. A., Motreanu D., “On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems”, Nonlinear Anal., 48:1 (2002), 37–52 | DOI | MR | Zbl
[10] Bonanno G., “Some remarks on a three critical points theorem”, Nonlinear Anal., 54:4 (2003), 651–665 | DOI | MR | Zbl
[11] Bonanno G., Giovannelli N., “An eigenvalue Dirichlet problem involving the $p$-Laplacian with discontinuous nonlinearities”, J. Math. Anal. Appl., 308:2 (2005), 596–604 | DOI | MR | Zbl
[12] Zhang G., Liu S., “Three symmetric solutions for a class of elliptic involving the $p$-Laplacian with discontinuous nonlinearities in $\mathbb R^n$”, Nonlinear Anal., 67:7 (2007), 2232–2239 | DOI | MR | Zbl
[13] Bonanno G., Candito P., “Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities”, J. Differential Eq., 244:12 (2008), 3031–3059 | DOI | MR | Zbl
[14] Bonanno G., Chinni A., “Discontinuous elliptic problems involving the $p(x)$-Laplacian”, Math. Nachr., 284:5–6 (2011), 639–652 | DOI | MR | Zbl
[15] Gol'dshtik M. A., “A mathematical model of separated flows in an incompressible liquid”, Soviet. Math. Dokl., 7 (1963), 1090–1093
[16] Potapov D. K., “A mathematical model of separated flows in an incompressible fluid”, Izv. RAEN. Ser. MMMIU, 8:3–4 (2004), 163–170
[17] Potapov D. K., “Continuous approximations of Gol'dshtik's model”, Math. Notes, 87:2 (2010), 244–247 | DOI | DOI | MR | Zbl
[18] Potapov D. K., “Approximation to the Dirichlet problem for a higher-order elliptic equations with a spectral parameter and a discontinuous nonlinearity”, Differ. Equ., 43:7 (2007), 1031–1032 | DOI | MR | Zbl