Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_3_a15, author = {A. I. Nikonov}, title = {Reduction of the sum of the weight equal powers to explicit combinatorial representation}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {163--169}, publisher = {mathdoc}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a15/} }
TY - JOUR AU - A. I. Nikonov TI - Reduction of the sum of the weight equal powers to explicit combinatorial representation JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 163 EP - 169 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a15/ LA - ru ID - VSGTU_2012_3_a15 ER -
%0 Journal Article %A A. I. Nikonov %T Reduction of the sum of the weight equal powers to explicit combinatorial representation %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 163-169 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a15/ %G ru %F VSGTU_2012_3_a15
A. I. Nikonov. Reduction of the sum of the weight equal powers to explicit combinatorial representation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2012), pp. 163-169. http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a15/
[1] Nikonov A. I., “Converting the Sum of Weighted Degrees of Natural Numbers with the Same Parameters”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1(20), 258–262 | DOI
[2] Nikonov A. I., “On One Property of the Weighed Sums of Equal Powers as Matrix Products”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 5(21), 313–317 | DOI
[3] Nikonov A. I., “The update exposition of the components organising the sum of weighted equal powers”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 1(26), 223–232 | DOI
[4] Vilenkin N. Ya., Combinatorics, Nauka, Moscow, 1969, 328 pp. | MR | Zbl