Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_3_a13, author = {V. N. Anisimov and V. L. Litvinov and I. V. Korpen}, title = {On a method of analytical solution of wave equation describing the oscillations sistem with moving boundaries}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {145--151}, publisher = {mathdoc}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a13/} }
TY - JOUR AU - V. N. Anisimov AU - V. L. Litvinov AU - I. V. Korpen TI - On a method of analytical solution of wave equation describing the oscillations sistem with moving boundaries JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 145 EP - 151 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a13/ LA - ru ID - VSGTU_2012_3_a13 ER -
%0 Journal Article %A V. N. Anisimov %A V. L. Litvinov %A I. V. Korpen %T On a method of analytical solution of wave equation describing the oscillations sistem with moving boundaries %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 145-151 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a13/ %G ru %F VSGTU_2012_3_a13
V. N. Anisimov; V. L. Litvinov; I. V. Korpen. On a method of analytical solution of wave equation describing the oscillations sistem with moving boundaries. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2012), pp. 145-151. http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a13/
[1] Savin G. N. Goroshko O. A., Dynamics of variable length strands, Naukova Dumka, 1962, 332 pp.
[2] Samarin Yu. P., Anisimov V. N., “Forced transverse vibrations of the flexible link at dispersal”, Izv. Vuzov. Mashinostroenie, 1986, no. 12, 17–21
[3] Anisimov V. N., Litvinov V. L., “Investigation of resonance characteristics of mechanical objects with moving borders by application of the Kantorovich–Galyorkin method”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 1(18), 149–158 | DOI
[4] Goroshko O. A., Savin G. N., Introduction in mechanics of one dimensional deformable bodies of variable length, Naukova Dumka, Kiev, 1971, 270 pp. | Zbl
[5] Vesnitskii A. I., Waves in systems with moving boundaries and loads, Moscow, Fizmatlit, 2001, 320 pp.
[6] Vesnitskii A. I., “The inverse problem for a one-dimensional resonator the dimensions of which vary with time”, Radiophys. Quantum Electronics, 14:10 (1971), 1209–1215 | DOI
[7] Barsukov K. A., Grigoryan G. A., “Theory of a waveguide with moving boundaries”, Radiophys. Quantum Electronics, 19:2 (1976), 194–200 | DOI
[8] Anisimov V. N., Litvinov V. L., The resonance properties of mechanical objects with moving boundaries, SamGTU, Samara, 2009, 131 pp.