A queuing system with distinct devices as the finite state machine
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2012), pp. 114-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

Queuing systems with distinct channels are considered. Channels may have different capacities (from each other) and distinct queues. The term “dispatch control” is introduced to optimize the system, considering the average time of service and failure probability minimization. These systems are treated as deterministic or nondeterministic finite state machines. State equations of these systems in the form of Zhegalkin polynomial are derived.
Keywords: queuing system, finite state machine, distinct channels, dispatch control.
@article{VSGTU_2012_3_a10,
     author = {A. P. Kotenko and M. B. Bukarenko},
     title = {A queuing system with distinct devices as the finite state machine},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {114--124},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a10/}
}
TY  - JOUR
AU  - A. P. Kotenko
AU  - M. B. Bukarenko
TI  - A queuing system with distinct devices as the finite state machine
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 114
EP  - 124
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a10/
LA  - ru
ID  - VSGTU_2012_3_a10
ER  - 
%0 Journal Article
%A A. P. Kotenko
%A M. B. Bukarenko
%T A queuing system with distinct devices as the finite state machine
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 114-124
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a10/
%G ru
%F VSGTU_2012_3_a10
A. P. Kotenko; M. B. Bukarenko. A queuing system with distinct devices as the finite state machine. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2012), pp. 114-124. http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a10/

[1] Artamanov G. T., Brehov O. M., Analytic probability models of the functioning of computers, Énergiya, Moscow, 1978, 368 pp. | MR

[2] Vvedenskaya N. D., Dobrushin R. L., Karpelevich F. I., “A queueing system with a choice of the shorter of two queues—an asymptotic approach”, Problems Inform. Transmission, 32:1 (1996), 15–27 | MR | Zbl

[3] Vvedenskaya N. D., “Large Queueing System where Messages are Transmitted via Several Routes”, Problems Inform. Transmission, 34:2 (1998), 180–189 | MR | Zbl

[4] Pechinkin A. V., Tatashev A. G., “Generalization of the discipline of advantageous sharing of a processor”, Eng. Cybern., 19:4 (1981), 91–96 | MR | Zbl

[5] D'Apice C., Manzo R., Pechinkin A. V., “A finite $M\!AP_K/G_K/1$ queueing system with generalized foreground-background processor-sharing discipline”, Autom. Remote Control, 65:11 (2004), 1793–1799 | DOI | MR

[6] Rykov V. V., “Monotone Control of Queueing Systems with Heterogeneous Servers”, Queueing Syst., 37:4 (2001), 391–403 | DOI | MR | Zbl

[7] de Véricourt F., Zhou Y.-P., “On the incomplete results for the heterogeneous server problem”, Queueing Syst., 52:3 (2006), 189–191 | DOI | MR | Zbl

[8] Nawijn W. M., “On a two-server finite queuing system with ordered entry and deterministic arrivals”, Eur. J. Oper. Res., 18:3 (1984), 388–395 | DOI | MR | Zbl

[9] Elsayed E. A., “Multichannel queueing systems with ordered entry and finite source”, Comput. Oper. Res., 10:3 (1983), 213–222 | DOI | MR

[10] Kotenko A. P., Bukarenko M. B., “Analytical description of queuing systems with use residue rings”, Proceedings of the Seventh All-Russian Scientific Conference with international participation. Part 2, Matem. Mod. Kraev. Zadachi, Samara State Technical Univ., Samara, 2010, 136–140

[11] Bukarenko M. B., “A queuing system with separate queues to channels”, Modern problems of mathematics, IMM UrO RAN, Ekaterinburg, 2011, 11–13