Inverse problem for nonlinear partial differential equation with high order pseudoparabolic operator
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2012), pp. 17-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the questions of generalized solvability of inverse problem for nonlinear partial differential equations with high order pseudoparabolic operator by method of separation of variables. The mixed problem is reduced to the Volterra integral equation of the second kind, and the inverse problem — to the system of Volterra integral equations. The unique solvability of the inverse problem and the stability of its solution are proved.
Keywords: nonlinear inverse problem, high order pseudoparabolic operator, generalized solvability.
@article{VSGTU_2012_3_a1,
     author = {T. K. Yuldashev},
     title = {Inverse problem for nonlinear partial differential equation with high order pseudoparabolic operator},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {17--29},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a1/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - Inverse problem for nonlinear partial differential equation with high order pseudoparabolic operator
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 17
EP  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a1/
LA  - ru
ID  - VSGTU_2012_3_a1
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T Inverse problem for nonlinear partial differential equation with high order pseudoparabolic operator
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 17-29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a1/
%G ru
%F VSGTU_2012_3_a1
T. K. Yuldashev. Inverse problem for nonlinear partial differential equation with high order pseudoparabolic operator. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2012), pp. 17-29. http://geodesic.mathdoc.fr/item/VSGTU_2012_3_a1/

[1] Gordeziani D. G., Avalishvili G. A., “On the constructing of solutions of the nonlocal initial boundary value problems for one-dimensional medium oscillation equations”, Matem. Mod., 12:1 (2000), 94–103 | MR | Zbl

[2] Dmitriev V. B., “A nonlocal problem with integral conditions for the wave equation”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2006, no. 2(42), 15–27 | MR

[3] Pul'kina L. S., “A mixed problem with integral condition for the hyperbolic equation”, Math. Notes, 74:3 (2003), 411–421 | DOI | DOI | MR | Zbl

[4] Kozhanov A. I., “Solvability of the inverse problem of finding thermal conductivity”, Siberian Math. J., 46:5 (2005), 841–856 | DOI | MR | Zbl

[5] Prilepko A. I., Tkachenko D. S., “Properties of solutions of a parabolic equation and the uniqueness of the solution of the inverse source problem with integral overdetermination”, Comput. Math. Math. Phys., 43:4 (2003), 537–546 | MR | Zbl

[6] Yuldashev T. K., “Nonexplicit evolution Volterra integral equation of the first kind with nonlinear integral delay”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2(19) (2009), 38–44 | DOI