Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_2_a8, author = {E. V. Dubovova}, title = {An investigation of residual stress relaxation processes which arises in plate circle hole surface layer in vibrocreep conditions}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {78--84}, publisher = {mathdoc}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a8/} }
TY - JOUR AU - E. V. Dubovova TI - An investigation of residual stress relaxation processes which arises in plate circle hole surface layer in vibrocreep conditions JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 78 EP - 84 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a8/ LA - ru ID - VSGTU_2012_2_a8 ER -
%0 Journal Article %A E. V. Dubovova %T An investigation of residual stress relaxation processes which arises in plate circle hole surface layer in vibrocreep conditions %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 78-84 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a8/ %G ru %F VSGTU_2012_2_a8
E. V. Dubovova. An investigation of residual stress relaxation processes which arises in plate circle hole surface layer in vibrocreep conditions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 78-84. http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a8/
[1] Radchenko V. P., Saushkin M. N., Creep and Relaxation of Residual Stresses in Hardened Structures, Mashinostroenie-1, Moscow, 2005, 226 pp.
[2] Dubovova E. V., Smyslov V. Yu., “Calculation of residual stresses and plastic deformations fields in the surface hardened layer of circular concentrator in plate taking into account the organization of surface plastic deformation process”, Proceedings of the Seventh All-Russian Scientific Conference with international participation. Part 1, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2010, 130–133
[3] Segerlind L. J., Applied Finite Element Analysis, John Wiley Sons, New York, 1984, 427 pp.
[4] Zienkiewicz O. C., The Finite Element Method in Engineering Science, McGraw-Hill, New York, 1972, 432 pp. | MR
[5] Radchenko V. P., Kichaev E. K., Simonov A. V., “Energetic variant of the model of rheological deformation and destruction of metals under a joint action of static and cyclic loads”, J. Appl. Mech. Tech. Phys., 41:3 (2000), 531–537 | DOI | MR | Zbl
[6] Radchebko V. P., Kichaev P. E., Energetic conception of the creep and vibrocreep of metals, SamGTU, Samara, 2011, 157 pp.
[7] Saushkin M. N., Dubovova E. V., “Identification of the parameters that control the process of softening of the material in terms of creep and vibrocreep”, Proceedings of the Fifth All-Russian Scientific Conference with international participation (29–31 May 2008). Part 1, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2008, 266–272
[8] Saushkin M. N., Dubovova E. V., “A method of solving boundary value problem of residual stresses relaxation in the hardened layer of cylindrical specimen during vibrocreep”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1(20), 111–120 | DOI