Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_2_a7, author = {N. N. Popov and L. V. Kovalenko}, title = {Evaluation of reliability of axisymmetric stochastic elements of constructions under creepage on the basis of theory of runs}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {72--77}, publisher = {mathdoc}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a7/} }
TY - JOUR AU - N. N. Popov AU - L. V. Kovalenko TI - Evaluation of reliability of axisymmetric stochastic elements of constructions under creepage on the basis of theory of runs JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 72 EP - 77 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a7/ LA - ru ID - VSGTU_2012_2_a7 ER -
%0 Journal Article %A N. N. Popov %A L. V. Kovalenko %T Evaluation of reliability of axisymmetric stochastic elements of constructions under creepage on the basis of theory of runs %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 72-77 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a7/ %G ru %F VSGTU_2012_2_a7
N. N. Popov; L. V. Kovalenko. Evaluation of reliability of axisymmetric stochastic elements of constructions under creepage on the basis of theory of runs. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 72-77. http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a7/
[1] Bolotin V. V., Methods of the Probability Theory and Reliability Theory in Structural Design, Stroyizdat, Moscow, 1982, 352 pp.
[2] Dolzhkovoi A. A., Popov N. N., Radchenko V. P., “Solution of the Stochastic Boundary-Value Problem of Steady-State Creep for a Thick-Walled Tube Using the Small-Parameter Method”, J. Appl. Mech. Tech. Phys., 47:1 (2006), 134–142 | DOI
[3] Isutkina V. N., Development of analytical methods for solving stochastic boundary value problems of steady-state creep for a flat strain state, Ph. D. Thesis (Phys. Math.), Samara, 2007, 247 pp.
[4] Radchenko V. P., Eremin Yu. A., Rheological deformation and fracture of materials and structural elements, Mashinostroenie-1, Moscow, 2004, 265 pp.