To the calculation of equilibrium parameters and stability of torsion process of circular bars made of weakening material
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 53-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of torsion of a bar with circular cross-section is considered. The bar is made of the material with a stress-strain diagram having the falling branch describing the softening state. It is shown that the bar has several possible equilibrium positions during the deformation process. The Newton–Kantorovich method is employed to define the stress-strain state in all equilibriums positions. The definition of stress and strain in both steady and unsteady equilibrium is carried out using the method of simple iterations. It is established that the divergence of simple iterations corresponds to the moment of stability loss.
Mots-clés : torsion
Keywords: hardening, weakening, full diagram of pure shear, nouniqueness of equilibrium positions, Newton–Kantorovich method, method of simple iterations, stability of deformation process.
@article{VSGTU_2012_2_a5,
     author = {V. V. Struzhanov and E. A. Bakhareva},
     title = {To the calculation of equilibrium parameters and stability of torsion process of circular bars made of weakening material},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {53--64},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a5/}
}
TY  - JOUR
AU  - V. V. Struzhanov
AU  - E. A. Bakhareva
TI  - To the calculation of equilibrium parameters and stability of torsion process of circular bars made of weakening material
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 53
EP  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a5/
LA  - ru
ID  - VSGTU_2012_2_a5
ER  - 
%0 Journal Article
%A V. V. Struzhanov
%A E. A. Bakhareva
%T To the calculation of equilibrium parameters and stability of torsion process of circular bars made of weakening material
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 53-64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a5/
%G ru
%F VSGTU_2012_2_a5
V. V. Struzhanov; E. A. Bakhareva. To the calculation of equilibrium parameters and stability of torsion process of circular bars made of weakening material. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 53-64. http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a5/

[1] Struzhanov V. V., Mironov V. I., Deformational Softening of Material in Structural Elements, UrO RAN, Ekaterinburg, 1995, 190 pp.

[2] Radchenko V. P., Nebogina E. V., Basov M. V., “Structural model of supercritical elasto-plastic deformation of materials under uniaxial tension”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2000, no. 9, 55–65 | DOI

[3] Gorev B. V., Banshchikova I. A., “To the description of softening stage of “stress–strain” diagram with scalar damage parameter kinetic equations”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2008, no. 2(17), 110–117 | DOI

[4] Gere J. M, Timoshenko S. P., Mechanics of Materials, PWS Publishing Co., Boston, MA, 1997, 912 pp.

[5] Horn R. A., Johnson C. R., Matrix Analysis, Cambridge University Press, Cambridge, 1985, 575 pp. ; Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989, 655 pp. | MR | Zbl | MR

[6] Struzhanov V. V., “The properties of softening materials and constitutive relations under uniaxial stress state”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2007, no. 2(15), 69–78 | DOI

[7] Ilyin V. A. Sadovnichiy V. A. Sendov Bl. H., Mathematical Analysis, v. 1, Velbi, Prospekt, Moscow, 2004, 655 pp.

[8] Kantorovich L. V., Akilov G. P., Functional Analysis, Pergamon Press, Oxford, 1982, 600 pp. | MR | MR | Zbl | Zbl

[9] Krasnoselskii M. A., Vaynikko G. M. Zabreyko P. P., Rutitskiy Ya. B., Stetsenko V. Ya., Approximate solution of operator equations, Wolters-Noordhoff Pub., Groningen, 1972, 484 pp. | MR | MR

[10] Fikhtengol'ts G. M., A Course of Differential and Integral Calculus, v. 1, Nauka, Moscow, 1970, 607 pp.

[11] | MR

[12] Kolmogorov A. N., Fomin S. V., Nauka, Moscow, 1989, 624 pp. | MR

[13] Struzhanov V. V., Zhizherin S. V., “Model of a damaged material and iterative methods for calculating stresses due to torsion”, Vychisl. Tekhnol., 5:2 (2000), 92–104 | Zbl

[14] Zhizherin S. V., Struzhanov V. V., “Iteration methods and stability in the problem of uniform deformation of a sphere whose central zone is made of a material subject to damage”, Mech. Solids, 39:2 (2004), 89–98

[15] Poston T., Stewart I., Catastrophe Theory and Its Applications, Surveys and Reference Works in Mathematics, Pitman, London, San Francisco, Melbourne, 1978, 491 pp. ; Poston T, Styuart I., Teoriya katastrof i ee prilozheniya, Mir, M., 1980, 608 pp. | MR | Zbl | MR | Zbl