Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_2_a4, author = {I. L. Kogan}, title = {Construction of {Mikusinski} operational calculus based on the convolution algebra of distributions. {Basic} provisions}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {44--52}, publisher = {mathdoc}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a4/} }
TY - JOUR AU - I. L. Kogan TI - Construction of Mikusinski operational calculus based on the convolution algebra of distributions. Basic provisions JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 44 EP - 52 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a4/ LA - ru ID - VSGTU_2012_2_a4 ER -
%0 Journal Article %A I. L. Kogan %T Construction of Mikusinski operational calculus based on the convolution algebra of distributions. Basic provisions %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 44-52 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a4/ %G ru %F VSGTU_2012_2_a4
I. L. Kogan. Construction of Mikusinski operational calculus based on the convolution algebra of distributions. Basic provisions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 44-52. http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a4/
[1] Mikusinski J., Operational calculus, Pergamon Press, New York, 1959, 495 pp. ; Mikusinskii Ya., Operatornoe ischislenie, Inostr. lit., M., 1956, 366 pp. | MR | Zbl | MR
[2] Schwartz L., Méthodes mathématiques pour les sciences physiques, Hermann, Paris, 1961, 39 pp. ; Shvarts L., Matematicheskie metody dlya fizicheskikh nauk, Mir, M., 1965, 412 pp. | MR | Zbl | MR
[3] Vladimirov V. S., Generalized functions in mathematical physics, Nauka, Moscow, 1979, 319 pp. | MR
[4] Kogan I. L., “Method of Duhamel integral for ordinary differential equations with constant coefficients in respect to the theory of distributions”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1(20), 37–45 | DOI
[5] Gel'fand I. M., Shilov G. E., Generalized functions, v. 1, Properties and operations, Academic Press, New York, 1964, 423 pp.
[6] Lavrent'ev M. A., Shabat B. V., Methods of the theory of functions in a complex variable, Nauka, Moscow, 1987, 688 pp. | MR | Zbl