Structure of the essential spectrum of a model operator associated to a system of three particles on a~lattice
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 34-43

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a model operator $H$ associated to a system of three particles interacting via nonlocal pair potentials on a three dimensional lattice. The existence conditions of the eigenvalues of a corresponding Friedrichs model are found and the structure of the essential spectrum of $H$ is studied.
Keywords: model operator, nonlocal potential, essential spectrum, Friedrichs model, eigenvalue, Fredholm determinant.
@article{VSGTU_2012_2_a3,
     author = {T. H. Rasulov},
     title = {Structure of the essential spectrum of a model operator associated to a system of three particles on a~lattice},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {34--43},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a3/}
}
TY  - JOUR
AU  - T. H. Rasulov
TI  - Structure of the essential spectrum of a model operator associated to a system of three particles on a~lattice
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 34
EP  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a3/
LA  - ru
ID  - VSGTU_2012_2_a3
ER  - 
%0 Journal Article
%A T. H. Rasulov
%T Structure of the essential spectrum of a model operator associated to a system of three particles on a~lattice
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 34-43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a3/
%G ru
%F VSGTU_2012_2_a3
T. H. Rasulov. Structure of the essential spectrum of a model operator associated to a system of three particles on a~lattice. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 34-43. http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a3/