Structure of the essential spectrum of a model operator associated to a system of three particles on a~lattice
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 34-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a model operator $H$ associated to a system of three particles interacting via nonlocal pair potentials on a three dimensional lattice. The existence conditions of the eigenvalues of a corresponding Friedrichs model are found and the structure of the essential spectrum of $H$ is studied.
Keywords: model operator, nonlocal potential, essential spectrum, Friedrichs model, eigenvalue, Fredholm determinant.
@article{VSGTU_2012_2_a3,
     author = {T. H. Rasulov},
     title = {Structure of the essential spectrum of a model operator associated to a system of three particles on a~lattice},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {34--43},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a3/}
}
TY  - JOUR
AU  - T. H. Rasulov
TI  - Structure of the essential spectrum of a model operator associated to a system of three particles on a~lattice
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 34
EP  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a3/
LA  - ru
ID  - VSGTU_2012_2_a3
ER  - 
%0 Journal Article
%A T. H. Rasulov
%T Structure of the essential spectrum of a model operator associated to a system of three particles on a~lattice
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 34-43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a3/
%G ru
%F VSGTU_2012_2_a3
T. H. Rasulov. Structure of the essential spectrum of a model operator associated to a system of three particles on a~lattice. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 34-43. http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a3/

[1] Rasulov T. Kh., “On the essential spectrum of a model operator associated with the system of three particles on a lattice”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 3(24), 42–51 | DOI

[2] Albeverio S., Lakaev S. N., Muminov Z. I., “On the number of eigenvalues of a model operator associated to a system of three-particles on lattices”, Russ. J. Math. Phys., 14:4 (2007), 377–387 | DOI | MR | Zbl

[3] Rasulov T. Kh., “Asymptotics of the discrete spectrum of a model operator associated with a system of three particles on a lattice”, Theoret. and Math. Phys., 163:1 (2010), 429–437 | DOI | DOI | MR | Zbl

[4] Albeverio S., Lakaev S. N., Djumanova R. Kh., “The essential and discrete spectrum of a model operator associated to a system of three identical quantum particles”, Rep. Math. Phys., 63:3 (2009), 359–380 | DOI | MR | Zbl

[5] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978, 396 pp. ; Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982, 430 pp. | MR | Zbl | MR | Zbl

[6] Zhislin G. M., “Discussion of the spectrum of the Schrödinger operator for systems of many particles”, Trudy Moskov. Mat. Obshch., 9 (1960), 81–120 | Zbl

[7] Albeverio S., Lakaev S. N., Muminov Z. I., “Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics”, Ann. Inst. Henri Poincaré, 5:4 (2004), 743–772 | MR | Zbl

[8] Albeverio S., Lakaev S. N., Muminov Z. I., “On the structure of the essential spectrum for the three-particle Schrödinger operators on lattices”, Math. Nachr., 280:7 (2007), 699–716 | DOI | MR | Zbl

[9] Heine V., Cohen M., Weir D., Pseudopotential Theory, Mir, Moscow, 1973, 557 pp.

[10] Hall R. L., “Exact solutions for semi-relativistic problems with non-local potentials”, J. Phys. A: Math. Gen., 39:4 (2006), 903–912 | DOI | MR | Zbl

[11] Chadan K., Kobayashi R., “The absence of positive energy bound states for a class of nonlocal potentials”, J. Phys. A: Math. Gen., 38:5 (2005), 1133–1145 | DOI | MR | Zbl

[12] Abdullaev Zh. I., “On the multiplicity of the eigenvalues of the generalized Friedrichs model”, Uzbek. Mat. Zh., 1996, no. 1, 3–10 | MR