Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_2_a23, author = {A. F. Zausaev and A. E. Derevyanka}, title = {Comparative analysis of mathematical models for estimating the impact probability of asteroid {Apophis}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {192--196}, publisher = {mathdoc}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a23/} }
TY - JOUR AU - A. F. Zausaev AU - A. E. Derevyanka TI - Comparative analysis of mathematical models for estimating the impact probability of asteroid Apophis JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 192 EP - 196 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a23/ LA - ru ID - VSGTU_2012_2_a23 ER -
%0 Journal Article %A A. F. Zausaev %A A. E. Derevyanka %T Comparative analysis of mathematical models for estimating the impact probability of asteroid Apophis %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 192-196 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a23/ %G ru %F VSGTU_2012_2_a23
A. F. Zausaev; A. E. Derevyanka. Comparative analysis of mathematical models for estimating the impact probability of asteroid Apophis. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 192-196. http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a23/
[1] Giorgini J. D., Benner L. A. M., Ostro S. J., Nolan M. C., Busch M. W., “Predicting the Earth encounters of (99942) Apophis”, Icarus, 193:1 (2008), 1–19 | DOI | MR
[2] Brumberg V. A., Relativistic celestial mechanics, Nauka, Moscow, 1972, 382 pp. | MR | Zbl
[3] Everhart E., “Implicit Single-Sequence Methods for Integrating Orbits”, Cel. Mech., 10:1 (1974), 35–55 | DOI | MR | Zbl
[4] Zausaev A. F., Zausaev A. A., “Employment of the modification Everhart's method for solution of problems of celestial mechanics”, Matem. Mod., 20:11 (2008), 109–114 | Zbl
[5] Zheleznov N. B., “The influence of correlations between asteroid orbital parameters estimated by observations on the probability of asteroid encounter with a planet calculated by Monte Carlo method”, Solar System Research, 44:2 (2010), 150–157 | DOI
[6] Ermakov S. M., The Monte Carlo method and related problems, Nauka, Moscow, 1975, 472 pp. | MR | Zbl
[7] Smirnov E. A., “The use of interval arithmetic in predicting the orbits of small bodies”, Astronomy and World Heritage across Time and Continents, Proc. of Internat. Conf., Kazan. Gos. Un-t, Kazan, 2009, 101–102