Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_2_a19, author = {E. A. Kozlova}, title = {Boundary {Control} {Problem} for the {Telegraph} {Equation}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {174--177}, publisher = {mathdoc}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a19/} }
TY - JOUR AU - E. A. Kozlova TI - Boundary Control Problem for the Telegraph Equation JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 174 EP - 177 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a19/ LA - ru ID - VSGTU_2012_2_a19 ER -
E. A. Kozlova. Boundary Control Problem for the Telegraph Equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 174-177. http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a19/
[1] Il'in V. A., Moiseev E. I., “Boundary control at one endpoint of a process described by a telegraph equation”, Dokl. Akad. Nauk, 387:5 (2002), 600–603 | MR | Zbl
[2] Il'in V. A., Moiseev E. I., “Boundary control at two endpoints of a process described by the telegraph equation”, Dokl. Akad. Nauk, 394:2 (2004), 154–158 | MR | Zbl
[3] Bitsadze A. V., “Some classes of partial differential equations”, Moscow, 1981, 448 pp. | MR | Zbl
[4] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, ed. H. Bateman, McGraw-Hill Book Co, Inc., New York – Toronto – London, 1953, 302 pp. ; Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. V 3-kh t., v. 1, Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973, 296 pp. | Zbl