Research of efficiency of algorithms of method Everhart with high order of approximating formulas
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 164-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

The modified algorithm for the numerical integration of the equations of celestial motion by the Everhart's method is developed. The study of the effectiveness of the algorithm for approximating high-order formulas is carried. High efficiency of the method is shown on the example of joint integration of the equations of motion of major planets, the Moon, the Sun and the small bodies of Solar system.
Keywords: Everhart's method, numerical integration, small bodies of Solar system.
Mots-clés : orbit
@article{VSGTU_2012_2_a18,
     author = {A. A. Zausaev},
     title = {Research of efficiency of algorithms of method {Everhart} with high order of approximating formulas},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {164--173},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a18/}
}
TY  - JOUR
AU  - A. A. Zausaev
TI  - Research of efficiency of algorithms of method Everhart with high order of approximating formulas
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 164
EP  - 173
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a18/
LA  - ru
ID  - VSGTU_2012_2_a18
ER  - 
%0 Journal Article
%A A. A. Zausaev
%T Research of efficiency of algorithms of method Everhart with high order of approximating formulas
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 164-173
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a18/
%G ru
%F VSGTU_2012_2_a18
A. A. Zausaev. Research of efficiency of algorithms of method Everhart with high order of approximating formulas. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 164-173. http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a18/

[1] Everhart E., “Implicit Single-Sequence Methods for Integrating Orbits”, Cel. Mech., 10:1 (1974), 35–55 | DOI | MR | Zbl

[2] Zausaev A. F., Zausaev A. A., Mathematical modelling of orbital evolution of small bodies of the Solar system, Mashinostroenie, Moscow, 2008, 250 pp.

[3] Zausaev A. F., Abramov V. V., Denisov S. S., Catalogue of orbital evolution of asteroids approaching to the Earth between 1800 and 2204, Mashinostroenie-1, Moscow, 2007, 608 pp.

[4] Modern numerical methods for ordinary differential equations, eds. G. Hall; J. M. Watt, Clarendon Press, Oxford, 1976, 336 pp. | MR

[5] Brumberg V. A., Relativistic celestial mechanics, Nauka, Moscow, 1972, 382 pp. | MR | Zbl