Bifurcations in a multicomponent Walras-type system under lack of information
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 152-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a Walras-type equilibrium model with a supply function specified by A. A. Shananin. In order to investigate a stability of market equilibrium under lack of information we develop a distributed model where price becomes discrete space variable. A bifurcation analysis allows us to examine asymptotic behavior of solutions to the model. We show that in a certain range of parameter values the system becomes spatially unstable and exhibits a qualitatively different bifurcation type.
Keywords: Walras equilibrium model, distributed dynamical system, bifurcation analysis, stability of asymptotic solutions, stability of market equilibrium.
@article{VSGTU_2012_2_a16,
     author = {A. S. Pivivarova},
     title = {Bifurcations in a multicomponent {Walras-type} system under lack of information},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {152--157},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a16/}
}
TY  - JOUR
AU  - A. S. Pivivarova
TI  - Bifurcations in a multicomponent Walras-type system under lack of information
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 152
EP  - 157
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a16/
LA  - ru
ID  - VSGTU_2012_2_a16
ER  - 
%0 Journal Article
%A A. S. Pivivarova
%T Bifurcations in a multicomponent Walras-type system under lack of information
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 152-157
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a16/
%G ru
%F VSGTU_2012_2_a16
A. S. Pivivarova. Bifurcations in a multicomponent Walras-type system under lack of information. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 152-157. http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a16/

[1] Bautin N. N., Leontovich E. A., Metody i priëmy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, M. Nauka, 1990, 490 pp. | MR | Zbl

[2] Galperin V. M., Ignatev S. M., Morgunov V. I., Mikroekonomika: V 2-kh tomakh, v. 1, ed. V. M. Galperin, Ekonomich. shk., SPb., 2002, 349 pp.

[3] Poddubnyi V. V., “Optimalnaya stabilizatsiya rynka, opisyvaemogo modifitsirovannoi dinamicheskoi modelyu Valrasa–Marshalla v prostranstve peremennykh «predlozhenie – tsena – spros»”, Vestn. Tomsk. gos. un-ta, 2004, no. 284, 80–89

[4] Shananin A. A., “On the stability of market mechanisms”, Matem. Mod., 3:2 (1991), 42–62 | MR | Zbl