Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_2_a14, author = {A. A. Sultanbekov}, title = {On the stability of a class of essentially nonlinear difference systems}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {132--143}, publisher = {mathdoc}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a14/} }
TY - JOUR AU - A. A. Sultanbekov TI - On the stability of a class of essentially nonlinear difference systems JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 132 EP - 143 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a14/ LA - ru ID - VSGTU_2012_2_a14 ER -
%0 Journal Article %A A. A. Sultanbekov %T On the stability of a class of essentially nonlinear difference systems %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 132-143 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a14/ %G ru %F VSGTU_2012_2_a14
A. A. Sultanbekov. On the stability of a class of essentially nonlinear difference systems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 132-143. http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a14/
[1] Lyapunov A. M., The general problem of the stability of motion., ONTI, Moscow, 1935, 386 pp.
[2] Malkin I. G., Theory of stability of motion, Gostrkhizdat, Moscow, 1952, 432 pp. | MR | Zbl
[3] Krasovskiy N. N., Some Problems of the Theory of Stability of Motion, Fizmatgiz, Moscow, 1959, 212 pp. | MR
[4] Zubov V.I., Stability of Motion, Vyssh. Shk., Moscow, 1973, 272 pp. | MR | Zbl
[5] Zubov V.I., Mathematical Methods for the Study of Automatic Control Systems, Sudpromgiz, Leningrad, 1959, 324 pp. | MR
[6] Halanay A., Vekcler D., The qualitative theory of sampled-data system, Mir, Moscow, 1971, 312 pp. | MR
[7] Skalkina M. A., “On a connection between stability of solutions of differential and finite-difference equations”, Prikl. Mat. Mekh., 19:3 (1955), 287–294 | MR | Zbl
[8] Aleksandrov A. Yu., Zhabko A. P., Stability of motion of discrete dynamical systems, SPb. Un-t, St. Petersburg, 2003, 112 pp. | MR
[9] Kozlov R. I., Theory of comparison systems in the method of vector Lyapunov functions, Nauka, Novosibirsk, 2001, 128 pp. | MR
[10] Kalitin B. S., “On a reduction principle for asymptotically triangular differential systems”, J. Appl. Math. Mech., 71:3 (2007), 351–360 | DOI | MR | Zbl
[11] Lur'e A. I., Analytical mechanics, Fizmatlit, Moscow, 1961, 824 pp. | MR
[12] Alexandrov A. Yu., Stability of motions of nonautonomous dynamical systems, SPb. Un-t, St. Petersburg, 2004, 184 pp.
[13] Rosier L., “Homogeneous Lyapunov function for homogeneous continuous vector field”, Systems Control Lett., 19:6 (1992), 467–473 | DOI | MR | Zbl
[14] Aleksandrov A. Yu., Platonov A. V., “Stability analysis based on nonlinear inhomogeneous approximation”, Math. Notes, 90:6 (2011), 787–800 | DOI | DOI | MR | Zbl
[15] Aleksandrov A. Yu., Platonov A. V., Stability of complex systems motions, SPb. Un-t, St. Petersburg, 2002, 79 pp.