Numerical solution of axisymmetric problem of the theory of elasticity on the basis of continuum graph model
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 103-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical method for analysis of the stress strain state of elastic media based on a discrete model in form of directed graph is suggested. To analyze a deformable body using the graph approach, we partition a solid body on elements and replace each element by its model in the form of an elementary cell. The matrices, presenting several structure elements of the graph, and the equations, describing the elementary cells, contribute to deriving the constitutive equations of the intact body. Numerical examples are presented.
Keywords: mathematical simulation, elasticity, directed graph, strain, stress.
@article{VSGTU_2012_2_a11,
     author = {A. A. Tirimov},
     title = {Numerical solution of axisymmetric problem of the theory of elasticity on the basis of continuum graph model},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {103--114},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a11/}
}
TY  - JOUR
AU  - A. A. Tirimov
TI  - Numerical solution of axisymmetric problem of the theory of elasticity on the basis of continuum graph model
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 103
EP  - 114
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a11/
LA  - ru
ID  - VSGTU_2012_2_a11
ER  - 
%0 Journal Article
%A A. A. Tirimov
%T Numerical solution of axisymmetric problem of the theory of elasticity on the basis of continuum graph model
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 103-114
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a11/
%G ru
%F VSGTU_2012_2_a11
A. A. Tirimov. Numerical solution of axisymmetric problem of the theory of elasticity on the basis of continuum graph model. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 103-114. http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a11/

[1] Kuzovkov E. G., Tyrymov A. A., “Graph model of an elastic solid in the axisymmetric formulation”, Modelling in Mechanics, Novosibirsk, SO AN SSSR, 1990, 103–109

[2] Tyrymov A. A., “Triangular element of the graph model for the axisymmetric problem of elasticity theory”, Numerical methods for solving problems in the theory of elasticity and plasticity, Nonparel, Novosibirsk, 2003, 187–191

[3] Kuzovkov E. G., “Axisymmetric graph model of an elastic solid”, Strength of Materials, 28:6 (1996), 470–485 | DOI

[4] Kron G., Ivestlgatlon of Complex Systems by Parts (Diacoptics), Nauka, Moscow, 1972, 542 pp.

[5] Trent H. M., “Isomorphisms between Oriented Linear Graphs and Lumped Physical Systems”, J. Acoust. Soc. Am., 27:3 (1955), 500–527 | DOI | MR

[6] Swamy M. N. S., Thulasiraman K., Graphs, Networks and Algorithms, John Wiley, New York, 1981, 592 pp. ; Svami M., Tkhulasiraman K., Grafy, seti i algoritmy, Mir, M., 1984, 454 pp. | MR | Zbl

[7] Tyrymov A. A., “A singular element of the graph model of an elastic medium in a cartesian coordinate system”, Computational Continuum Mechanics, 4:4 (2011), 125–136

[8] Demidov S. P., Theory of Elasticity, Vyssh. Shk., Moscow, 1979, 432 pp.