Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_2_a11, author = {A. A. Tirimov}, title = {Numerical solution of axisymmetric problem of the theory of elasticity on the basis of continuum graph model}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {103--114}, publisher = {mathdoc}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a11/} }
TY - JOUR AU - A. A. Tirimov TI - Numerical solution of axisymmetric problem of the theory of elasticity on the basis of continuum graph model JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 103 EP - 114 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a11/ LA - ru ID - VSGTU_2012_2_a11 ER -
%0 Journal Article %A A. A. Tirimov %T Numerical solution of axisymmetric problem of the theory of elasticity on the basis of continuum graph model %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 103-114 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a11/ %G ru %F VSGTU_2012_2_a11
A. A. Tirimov. Numerical solution of axisymmetric problem of the theory of elasticity on the basis of continuum graph model. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 103-114. http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a11/
[1] Kuzovkov E. G., Tyrymov A. A., “Graph model of an elastic solid in the axisymmetric formulation”, Modelling in Mechanics, Novosibirsk, SO AN SSSR, 1990, 103–109
[2] Tyrymov A. A., “Triangular element of the graph model for the axisymmetric problem of elasticity theory”, Numerical methods for solving problems in the theory of elasticity and plasticity, Nonparel, Novosibirsk, 2003, 187–191
[3] Kuzovkov E. G., “Axisymmetric graph model of an elastic solid”, Strength of Materials, 28:6 (1996), 470–485 | DOI
[4] Kron G., Ivestlgatlon of Complex Systems by Parts (Diacoptics), Nauka, Moscow, 1972, 542 pp.
[5] Trent H. M., “Isomorphisms between Oriented Linear Graphs and Lumped Physical Systems”, J. Acoust. Soc. Am., 27:3 (1955), 500–527 | DOI | MR
[6] Swamy M. N. S., Thulasiraman K., Graphs, Networks and Algorithms, John Wiley, New York, 1981, 592 pp. ; Svami M., Tkhulasiraman K., Grafy, seti i algoritmy, Mir, M., 1984, 454 pp. | MR | Zbl
[7] Tyrymov A. A., “A singular element of the graph model of an elastic medium in a cartesian coordinate system”, Computational Continuum Mechanics, 4:4 (2011), 125–136
[8] Demidov S. P., Theory of Elasticity, Vyssh. Shk., Moscow, 1979, 432 pp.