On uniqueness of the second boundary value problem solutions for the third order composite type equation in unbounded domains
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 18-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the second boundary value problem for the third order composite type equations is investigated. We established Saint-Venant's type energy estimates for weak solutions of the problem on Sobolev classes. The obtained estimates are used to prove uniqueness theorems in the classes of functions growing at infinity. These uniqueness classes depend on the geometrical characteristics of the domain. Moreover, energy estimates allowing us to investigate behavior of solution in the neighborhood of singular points were obtained.
Keywords: uniqueness theorem, third order differential equations, singular points, general solutions, unbounded domains.
Mots-clés : Saint-Venant's principle
@article{VSGTU_2012_2_a1,
     author = {A. R. Khashimov},
     title = {On uniqueness of the second boundary value problem solutions for the third order composite type equation in unbounded domains},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {18--25},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a1/}
}
TY  - JOUR
AU  - A. R. Khashimov
TI  - On uniqueness of the second boundary value problem solutions for the third order composite type equation in unbounded domains
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 18
EP  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a1/
LA  - ru
ID  - VSGTU_2012_2_a1
ER  - 
%0 Journal Article
%A A. R. Khashimov
%T On uniqueness of the second boundary value problem solutions for the third order composite type equation in unbounded domains
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 18-25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a1/
%G ru
%F VSGTU_2012_2_a1
A. R. Khashimov. On uniqueness of the second boundary value problem solutions for the third order composite type equation in unbounded domains. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2012), pp. 18-25. http://geodesic.mathdoc.fr/item/VSGTU_2012_2_a1/

[1] Saint-Venant A. J. C. B., “Memoire sur la Torsion des Prismes”, Mem. Divers Savants, 14, (1855), 233–560

[2] Gurtin M. E., “The Linear Theory of Elasticity”, Handbuch der Physik, v. VIa/2, Springer-Verlag, Heidelberg, 1972, 1–296

[3] Knowles J. K., “On Saint-Venant's principle in the two-dimensional linear theory of elasticity”, Arch. Ration. Mech. Anal., 21:1 (1966), 1–22 | DOI | MR

[4] Flavin J. N., “On Knowles' version of Saint-Venant's Principle in two-dimensional elastostatics”, Arch. Ration. Mech. Anal., 53:4 (1974), 366–375 | DOI | MR | Zbl

[5] Toupin R. A., “Saint-Venant's Principle”, Arch. Ration. Mech. Anal., 18:2 (1965), 83–96 | DOI | MR | Zbl

[6] Oleinik O. A., Iosifian G. A., “On singularities at the boundary points and uniqueness theorems for solutions of the first boundary value problem of elasticity”, Comm. Part. Differ. Equat., 2:9 (1977), 937–969 | DOI | MR | Zbl

[7] Kovalevskiy A. A., Skrypnik I. I., Shishkov A. E., Singular solutions of nonlinear elliptic and parabolic equations, Naukova Dumka, Kiev, 2010, 499 pp. | MR | Zbl

[8] Galaktionov V. A., Shishkov A. E., “Self-similar boundary blow-up for higher-order quasilinear parabolic equations”, Proc. R. Soc. Edinb. A, 135:6, 1195–1227(33) | DOI | MR | Zbl

[9] Shishkov A. E., “Uniqueness classes of generalized solutions of boundary value problems for parabolic equations in unbounded noncylindrical domains”, Differ. Equat., 26:9 (1990), 1212–1218 | MR | Zbl

[10] Dzhuraev T. D., Khashimov A. R., “On the existence of value boundary problem first solutions for equations of third order compound type in an unbounded region”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2003, no. 19, 5–7 | DOI

[11] Khashimov A. R., “On the uniqueness of the solution of a boundary value problem for a general third-order equation of composite type in unbounded domains”, Uzbek. Mat. Zh., 1999, no. 3, 77–85 | MR

[12] Khashimov A. R., “On local estimations of generalized solutions to third order composite type equations”, Nonclassical Equations of Mathematical Physics, Novosibirsk, 2005, 285–291

[13] Kozhanov A. I., Novosibirsk. Gos. Univ., Novosibirsk, 1990, 132 pp. | MR