Investigation of uniaxial and biaxial loadings of softening materials in endochronic theory of inelasticity
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 110-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

Uniaxial and biaxial alternating strains of softening materials are explored in the framework of inelastic theory of endochronic type accounting material dilatation. Constitutive relations generalized for large strain domain are proposed. Some simulated examples for demonstration of theory capability are presented.
Keywords: inelasticity, endochronic theory, biaxial loading, softening materials.
Mots-clés : constitutive equations
@article{VSGTU_2012_1_a9,
     author = {Yu. I. Kadashevich and S. P. Pomytkin},
     title = {Investigation of uniaxial and biaxial loadings of softening materials in endochronic theory of inelasticity},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {110--115},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a9/}
}
TY  - JOUR
AU  - Yu. I. Kadashevich
AU  - S. P. Pomytkin
TI  - Investigation of uniaxial and biaxial loadings of softening materials in endochronic theory of inelasticity
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 110
EP  - 115
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a9/
LA  - ru
ID  - VSGTU_2012_1_a9
ER  - 
%0 Journal Article
%A Yu. I. Kadashevich
%A S. P. Pomytkin
%T Investigation of uniaxial and biaxial loadings of softening materials in endochronic theory of inelasticity
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 110-115
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a9/
%G ru
%F VSGTU_2012_1_a9
Yu. I. Kadashevich; S. P. Pomytkin. Investigation of uniaxial and biaxial loadings of softening materials in endochronic theory of inelasticity. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 110-115. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a9/

[1] Maier G., “Incremental plastic analysis in the presence of large displacements and physical instability effects”, Int. J. Solids Struct., 7:4 (1971), 345–372 | DOI | MR | Zbl

[2] Ibragimov V. A., Klyushnikov V. D., “Some problems for media with an incident diagram”, Izv. AN SSSR. MTT, 1971, no. 4, 116–121

[3] Kadashevich Yu. I., “The theory of plasticity and creep taking into account the microfracture”, Dokl. AN SSSR, 266:6 (1982), 1341–1344

[4] Lebedev A. A., Chausov N. G., “Phenomenological fundamentals of the evaluation of crack resistance of materials on the basis of parameters of falling portions of strain diagrams”, Strength of Materials, 15:2, 155–160 | DOI | Zbl

[5] Lin'kov A. M., “Stability of rock as it softens with time”, J. Min. Sci, 25:1, 9–17 | DOI

[6] Novozhilov V. V., Kadashevich Yu. I., Microstresses in Structural Materials, Mashinostroenie, Leningrad, 1990, 223 pp.

[7] Vasin R. A., Enikeev F. U., Mazurskii M. I., “Materials with a Falling Diagram”, Izv. RAN. MTT, 1995, no. 2, 181–182 | MR

[8] Nikitin L. V., “The postcritical behavior of a strain-softening material”, Phys.-Dokl., 40:6 (1995), 300-303 | MR | Zbl

[9] Vil'deman V. É., Sokolkin Yu. V., Tashkinov A. A., Mechanics of inelastic deformation and fracture of composite materials, Nauka, Fizmatlit, Moscow, 1997, 288 pp. | MR

[10] Stavrogin A. N., Tarasov B. G., Fevzner E. D., “Influence of deformation velocity on the limiting characteristics of rocks”, J. Min. Sci, 18:5 (1982), 360–366 | DOI

[11] Struzhanov V. V., “The associated and the incremental laws of plastic yielding for strain-softening media”, Izv. Ural. Gos. Un-ta, 1998, no. 10, 92–101 | Zbl

[12] Struzhanov V. V., Bashurov Vyach. V., Karimov P. F., “On the determination of parameters of the incremental plasticity law for isotropic media”, Izv. Ural. Gos. Un-ta, 1999, no. 14, 119–134 | Zbl

[13] Struzhanov V. V., “Elastoplastic medium with a softening. Part 1. Material properties and incremental plasticity law is in tension”, Vestn. Sam. Gos. Tehn. Un-ta. Ser. Fiz.-Mat. Nauki, 2006, no. 42, 49–61 | DOI

[14] Struzhanov V. V., “Elastoplastic medium with a softening. Part 2. Defining relations for complex stress state”, Vestn. Sam. Gos. Tehn. Un-ta. Ser. Fiz.-Mat. Nauki, 2006, no. 43, 68–80 | DOI

[15] Struzhanov V. V., Bashurov Vyach. V., “The modified Masing model”, Vestn. Sam. Gos. Tehn. Un-ta. Ser. Fiz.-Mat. Nauki, 2007, no. 1(14), 29–39 | DOI

[16] Struzhanov V. V., Prosviryakov E. Yu., “Tension with torsion. Part 1. Material properties”, Vestn. Sam. Gos. Tehn. Un-ta. Ser. Fiz.-Mat. Nauki, 2008, no. 1(16), 36–44 | DOI

[17] Kadashevich Yu. I., Pomytkin S. P., “Endochronic theory of inelasticity for softening materials with regard to large deformations”, Modern problems of resource materials and structures, MAMI, Moscow, 2009, 158–165

[18] Kadashevich Yu. I., Pomytkin S. P., “Account of dilation in the endochronic theory of plasticity”, SPbGTURP, St. Petersburg, 2001, 127–129

[19] Kadashevich Yu. I., Pomytkin S. P., “Description of triaxial simple loading in the endochronic theory of inelasticity, taking into account materials dilatation”, SPbGTURP, St. Petersburg, 2008, 68–73

[20] Colymbas D., “Generalized hypoelastic constitutive equation: Predictions for hollow-cylinder and cube tests”, Proc. of the Int. Workshop on Constitutive Equations for Granular Non-Cohesive Soils, Rotterdam, 1988, 349–366

[21] Kolymbas D., Herle I., Von Wolffersdorff P. A., “Hypoplastic constitutive equation with internal variables”, Int. J. Numer. Anal. Meth. Geomech, 19:6, 415–436 | DOI | Zbl

[22] Radchenko V. P., Andreeva E. A., “On the Bauschinger effect at the stage of plastic softening of the material”, Winter School on Continuum Mechanics. Vol. 1, Perm', 2007, 42–45