Axisymmetric problem for inhomogeneous conical shell
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 74-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

New analytical solution of the axisymmetric dynamic problem for circular conical shells with inhomogeneous thickness and finite shear rigidity was developed on the basis of improved theory by generalized method of finite integral transformations. Arbitrary dynamic load for the shells with rigidly clamped edges is considered. Dissipative forces of viscous resistance are taken into account in the calculation. The stress state as well as dynamic characteristics of the shells depending on the degree of its heterogeneity is analyzed.
Keywords: conical shell, inhomogeneous, improved theory, finite integral transformations, analytical solution, oscillation frequencies, oscillogram of moves.
@article{VSGTU_2012_1_a7,
     author = {Yu. \`E. Senitskiy},
     title = {Axisymmetric problem for inhomogeneous conical shell},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {74--91},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a7/}
}
TY  - JOUR
AU  - Yu. È. Senitskiy
TI  - Axisymmetric problem for inhomogeneous conical shell
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 74
EP  - 91
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a7/
LA  - ru
ID  - VSGTU_2012_1_a7
ER  - 
%0 Journal Article
%A Yu. È. Senitskiy
%T Axisymmetric problem for inhomogeneous conical shell
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 74-91
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a7/
%G ru
%F VSGTU_2012_1_a7
Yu. È. Senitskiy. Axisymmetric problem for inhomogeneous conical shell. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 74-91. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a7/

[1] Petrov V. V., Ovchinnikov I. G., Shikhov Yu. M., Design of Structural Elements in Corrosive Environment, Saratovsk. Gos. Un-t, Saratov, 1987, 288 pp.

[2] Senitskiy Yu. É., Koz'ma I. E., “Towards the Solution of Axissimetric Dynamic Problem for Nonhomogeneous in Thickness Cylindrical Shell with Finite Shearing Rigidity”, Izv. Vuzov. Stroitel'stvo, 2005, no. 2, 8–18

[3] Senitskiy Yu. É., “On the integrability of the dynamical initial-boundary value problem for an inhomogeneous shallow spherical shell”, Vestnik Samarsk. Un-ta, 1998, no. 2 (8), 106–121 | Zbl

[4] Senitskii Yu. E., “Dynamics of inhomogeneous non-shallow spherical shells”, Mech. Solids, 37:6 (2002), 123–133

[5] Grigolyuk E. I., Selezov I. T., “Nonclassical Theories of Vibration of Beams, Plates, and Shells”, Advances in Science and Technology. Mechanics of Deformable Solids, 5, VINITI, Moscow, 1973, 5–199

[6] Senitskiy Yu. É., “The equations of motion of inhomogeneous shells with finite shear stiffness”, Izv. Vuzov. Stroitel'stvo, 2002, no. 10, 19–27

[7] Senitskiy Yu. É., Elenitskiy É. Ya., “On the physical consistent model refined theory of plates and shells”, Dokl. RAN, 331:5 (1993), 580–582

[8] Senitskiy Yu. É., Use of the Method of Finite Integral Transforms to Study the Elastic Deformation of Structural Elements under Dynamic Loads, Saratovsk. Gos. Un-t, Saratov, 1985, 176 pp.

[9] Tseitlin A. I., Kusainov A. A., Methods for Taking into Account Internal Friction in Dynamic Problems for Structures, Nauka, Alma-Ata, 1987, 237 pp.