Pure bending of beams made of multimodular behavior material under creep conditions
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 66-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of pure bending of beams with rectangular and circular cross-section is solved at steady-state creep, taking into account the different characteristics of the material in tension and compression. Constitutive relations for steady-state creep are taken in the form of fractional functions. A comparison of solutions of problems for beams with square and circular cross-section with the same values of the axial moments of inertia is given.
Keywords: beams, bending, steady-state creep, multimodulus behavior of material, fractional model, square cross-section, circular cross-section.
@article{VSGTU_2012_1_a6,
     author = {A. M. Lokoshchenko and K. A. Agahi and L. V. Fomin},
     title = {Pure bending of beams  made of  multimodular behavior material under creep conditions},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {66--73},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a6/}
}
TY  - JOUR
AU  - A. M. Lokoshchenko
AU  - K. A. Agahi
AU  - L. V. Fomin
TI  - Pure bending of beams  made of  multimodular behavior material under creep conditions
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 66
EP  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a6/
LA  - ru
ID  - VSGTU_2012_1_a6
ER  - 
%0 Journal Article
%A A. M. Lokoshchenko
%A K. A. Agahi
%A L. V. Fomin
%T Pure bending of beams  made of  multimodular behavior material under creep conditions
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 66-73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a6/
%G ru
%F VSGTU_2012_1_a6
A. M. Lokoshchenko; K. A. Agahi; L. V. Fomin. Pure bending of beams  made of  multimodular behavior material under creep conditions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 66-73. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a6/

[1] Kachanov L. M., Theory of Creep, Fizmatgiz, Moscow, 1960, 456 pp.

[2] Rabotnov Yu. N., Strength of Materials, Fizmatgiz, Moscow, 1962, 456 pp.

[3] Rabotnov Yu. N., Creep of Structural Elements, Nauka, Moscow, 1966, 752 pp. | Zbl

[4] Boyle J. T., Spence J., Stress Analysis for Creep, Buttenworth, London, 1983, 296 pp.; Boil Dzh., Spens Dzh., Analiz napryazhenii v konstruktsiyakh pri polzuchesti, Mir, M., 1986, 360 pp.

[5] Radchenko V. P., Eremin Yu. A., Rheological Deformation and Failure of Materials and Structural Elements, Mashinostroenie-1, Moscow, 2004, 264 pp.

[6] Sorokin O. V., Samarin Yu. P., Oding I. A., “Calculation of the Creep of Beams During Bending”, Sov. Phys., Dokl., 9, 728–733

[7] Nikitenko A. F., Sosnin O. V., “Beam flexure for materials possessing different creep characteristics in tension and compression”, Strength of Materials, 3:6 (1971), 693–697 | DOI

[8] Gorev B. V., “To unsteady creep calculation of a flexible rod made of material with different characteristics for tension and compression”, Dynamics of Continuous Media, Collected scientific papers. 14, Novosibirsk, 1973, 44–51

[9] Lellep Ja., “Steady-state creep of beams in case of materials with different characteristics at tension and compression”, Tr. Tartus. Un-ta., 355:15 (1975), 245–252 | Zbl

[10] Eremin Yu. A., Kaydalova L. V., Radchenko V. P., “The study of creep of beams based on the analogy of the structure of the equation of state of materials and structural elements”, Mashinovedenie, 1983, no. 2, 67–74

[11] Lokoshenko A. M., Pechenina N. E., Shesterikov S. A., “The durability of a cylindrical rod under pure bending”, Izv. vuz. Mashinostr., 1988, no. 9, 9–13

[12] Basov M. V., “Application of a structural model of rod type to solving the problem of bending and fracture of a beam under creep conditions”, Actual Problems of Modern Science. Natural Sciences. Part 1, SamGTU, Samara, 2002, 47–48

[13] Andreeva E. A., Agafonov A. A., “The solution of the boundary value problem of rod bending made of plastic softening material on the basis of the structural model”, Actual Problems of Modern Science. Natural Sciences. Part 1–3, SamGTU, Samara, 2008, 168–178

[14] Shesterikov S. A., Yumasheva M. A., “Specification of Equation of State in Creep Theory”, Izv. AN SSSR. Mekh. Tverd. Tela, 1984, no. 1, 86–91

[15] Shesterikov S. A., Yumasheva M. A., “Variant of state equations for creep and its applications”, Voprosy dolgovremennoiy prochnosti energeticheskogo oborudovaniya / Trudy TsKTI. 246, NPO TsKTI, Leningrad, 1988, 74–77