On two special functions, generalizing the~Mittag-Leffler type function, their~properties~and~applications
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 52-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two special functions, concerning Mittag-Leffler type functions, are studied. The first is the modification of generalized Mittag–Leffler function, which was introduced by A. A. Kilbas and M. Saigo; the second is the special case of the first one. The relation of these functions with some elementary and special functions and their role in solving of Abel–Volterra integral equations is indicated. The formulas of the fractional integration and differentiation in sense of Riemann–Liouville and Kober are presented. The applications to Cauchy type problems for some linear fractional differential equations with Riemann-Liouville and Kober derivatives are noticed.
Keywords: special functions, Mittag–Leffler type function, Riemann–Liouville integral and differential operators, fractional differential and integral equations, Cauchy type problems.
@article{VSGTU_2012_1_a5,
     author = {E. N. Ogorodnikov},
     title = {On two special functions, generalizing {the~Mittag-Leffler} type function, their~properties~and~applications},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {52--65},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a5/}
}
TY  - JOUR
AU  - E. N. Ogorodnikov
TI  - On two special functions, generalizing the~Mittag-Leffler type function, their~properties~and~applications
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 52
EP  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a5/
LA  - ru
ID  - VSGTU_2012_1_a5
ER  - 
%0 Journal Article
%A E. N. Ogorodnikov
%T On two special functions, generalizing the~Mittag-Leffler type function, their~properties~and~applications
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 52-65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a5/
%G ru
%F VSGTU_2012_1_a5
E. N. Ogorodnikov. On two special functions, generalizing the~Mittag-Leffler type function, their~properties~and~applications. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 52-65. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a5/

[1] Kilbas A. A., Saigo M., “On solution of integral equation of Abel–Volterra type”, Diff. Integr. Equat., 8:5 (1995), 547–576 | MR

[2] Kilbas A. A., Saigo M., “On Mittag–Leffler type function, fractional calculus operators and solutions of integral equations”, Integral Transform. Spec. Funct., 4:4 (1996), 335–370 | MR

[3] Gorenflo R., Kilbas A. A., Rogozin S. V., “On the generalized Mittag–Leffler type function”, Integral Transform. Spec. Funct., 7:3–4 (1998), 215–224 | DOI | MR | Zbl

[4] Gorenflo R., Kilbas A. A., Rogozin S. V., “On the properties of a generalized Mittag–Leffler type function”, Dokl. Nats. Akad. Nauk Belarusi, 42:5 (1998), 34–39 | MR | Zbl

[5] Kilbas A. A., Srivastava H. M., Trujillo J. J., “Theory and Applications of Fractional Differential Equations”, North-Holland Mathematics Studies, 204, ed. J. van Mill, Elsevier, Amsterdam, 2006, 523 | MR | Zbl

[6] Ogorodnikov E. N., “A nonlocal boundary value problems for one model parabolic-hyperbolic equation with fractional derivative”, Proceedings of the Fourth All-Russian Scientific Conference with international participation (29–31 May 2007). Part 3, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2007, 147–152

[7] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, ed. H. Bateman, McGraw-Hill Book Co, Inc., New York – Toronto – London, 1953, 302 pp. ; Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. V 3-kh t, v. 1, Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973, 296 pp. | MR | Zbl | MR

[8] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. III, ed. H. Bateman, McGraw-Hill Book Co, Inc., New York – Toronto – London, 1955, 292 pp. ; Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. V 3-kh t, v. 3, Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1973, 299 pp. | Zbl | MR

[9] Dzhrbashyan M. M., Integral transforms and representations of functions in complex domain, Nauka, Moscow, 1966, 672 pp. | MR

[10] Podlubny I., “Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications”, Mathematics in Science and Engineering, 198, Academic Press, San Diego, 1999, 340 pp. | MR | Zbl

[11] Ogorodnikov E. N., “On the Cauchy problem for the model differential equations of fractional oscillator”, Modern Problems of Computational Mathematics and Mathematical Physics, VMK MGU; Maks Press, Moscow, 2009, 229–231

[12] Ogorodnikov E. N., Yashagin N. S., “Some special functions in the solution to Cauchy problem for a fractional oscillating equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 1(18), 276–279 | DOI

[13] Ogorodnikov E. N.,, “On two special functions that generalize the Mittag–Leffler type function, their properties and applications”, The Second International Conference “Mathematical Physics and Its Applications”, Proc. of International Conf. (Samara, August 27 – September 2, 2012.), Kniga, Samara, 2010, 248–249

[14] Samko S. G., Kilbas A. A., Marichev O. I., Integrals and Derivatives of Fractional Order and Some of Their Applications, Nauka i Tekhnika, Minsk, 1987, 688 pp. | MR | Zbl

[15] Nakhushev A. M., “Inverse problems for degenerating equations and Volterra integral equations of the third kind”, Differents. Uravneniya, 10:1, 100–111

[16] Nakhushev A. M., Fractional Calculus and its Applications, Fizmatlit, Moscow, 2003, 272 pp. | Zbl

[17] Tricomi F., “Integral Equations”, Pure and Applied Mathematics, 5, Interscience Publishers, New York, 1957, 246 ; Trikomi F., Integralnye uravneniya, Inostr. lit., M., 1960, 300 pp. | MR | MR

[18] Ogorodnikov E. N., “On some boundary value problems for system of the Bitsadze–Lykov equations with involutive matrix”, Proceedings of the Tenth Interuniversity Scientific Conference. Part 3, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2000, 119–126

[19] Ogorodnikov E. N., “The correctness of the Cauchy–Goursat problem for loaded degenerate hyperbolic equations in some special cases, and its equivalent to the problem with nonlocal boundary conditions”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2004, no. 26, 26–38 | DOI

[20] Ogorodnikov E. N., Arlanova E. Yu., “Some non-local analogues of the Cauchy–Goursat problem and essentially nonlocal boundary value problems for system of the Bitsadze–Lykov equations in special cases”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2005, no. 34, 24–39 | DOI

[21] Ogorodnikov E. N., Yashagin N. S., “On some properties of operators with Mittag-Leffler type functions in kernels”, Proceedings of the Sixth All-Russian Scientific Conference with international participation (1–4 June 2009). Part 3, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2009, 181–188

[22] Ogorodnikov E. N., Yashagin N. S., “Setting and solving of the Cauchy type problems for the second order differential equations with Riemann–Liouville fractional derivatives”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1(20), 24–36 | DOI

[23] Kolmogorov A. N., Fomin S. V., Elements of the Theory of Functions and Functional Analysis, Nauka, Moscow, 1976, 543 pp. | MR