Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_1_a27, author = {D. K. Potapov}, title = {On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {251--255}, publisher = {mathdoc}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a27/} }
TY - JOUR AU - D. K. Potapov TI - On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 251 EP - 255 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a27/ LA - ru ID - VSGTU_2012_1_a27 ER -
%0 Journal Article %A D. K. Potapov %T On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 251-255 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a27/ %G ru %F VSGTU_2012_1_a27
D. K. Potapov. On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 251-255. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a27/
[1] Pavlenko V. N., Potapov D. K., “Existence of a ray of eigenvalues for equations with discontinuous operators”, Siberian Math. J., 42:4 (2001), 766–773 | DOI | MR | Zbl
[2] Potapov D. K., “On an existence of a ray of eigenvalues for equations of elliptic type with discontinuous nonlinearities in a critical case”, Vestn. St. Petersburg Univ. Ser. 10, 2004, no. 4, 125–132
[3] Potapov D. K., “On an upper bound for the value of the bifurcation parameter in eigenvalue problems for elliptic equations with discontinuous nonlinearities”, Differ. Equ., 44:5 (2008), 737–739 | DOI | MR | Zbl
[4] Potapov D. K., “On the eigenvalue set structure for higher-order equations of elliptic type with discontinuous nonlinearities”, Differ. Equ., 46:1 (2010), 155–157 | DOI | MR | Zbl
[5] Krasnosel'skiy M. A., Pokrovskiy A. V., “Regular solutions of equations with discontinuous nonlinearities”, Dokl. AN SSSR, 226:3 (1976), 506–509 | MR
[6] Gol'dshtik M. A., “A mathematical model of separated flows in an incompressible liquid”, Dokl. AN SSSR, 147:6 (1962), 1310–1313
[7] Chang K. C., “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. Appl., 80:1 (1981), 102–129 | DOI | MR | Zbl
[8] Lavrent'ev M. A., The variational method in boundary-value problems for systems of equations of elliptic type, AN SSSR, Moscow, 1962, 136 pp. | MR
[9] Vainshtein I. I., Yurovskii V. K., “Attachment of eddy flows of an ideal fluid”, J. Appl. Mech. Tech. Phys., 17:5 (1976), 678–679 | DOI
[10] Titov O. V., “Variational approach for plane problems of matching potential and vortical flows”, J Appl. Math. Mech., 41:2 (1977), 365–368 | DOI
[11] Potapov D. K., “A mathematical model of separated flows in an incompressible fluid”, Izv. RAEN. Ser. MMMIU, 8:3–4 (2004), 163–170
[12] Vainshtein I. I., “The dual problem to M. A. Goldshtik problem with arbitrary vorticity”, J. Sib. Fed. Univ. Math. Phys., 3:4 (2010), 500–506
[13] Vainshtein I. I., “Solution of two dual problems of gluing vorter and potential flows by M. A. Goldshtick variational method”, J. Sib. Fed. Univ. Math. Phys., 4:3 (2011), 320–331