On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 251-255

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence of solutions of eigenvalue problems for elliptic equations of the second order with nonlinearity discontinuous with respect to a phase variable. Using the variational method, we receive the theorems on number of solutions for investigated problems. M. A. Gol'dshtik's problem on separated flows of incompressible fluid is considered as an appendix.
Keywords: boundary value problems, eigenvalue problems, discontinuous nonlinearity, variational method, number of solutions.
Mots-clés : elliptic equations
@article{VSGTU_2012_1_a27,
     author = {D. K. Potapov},
     title = {On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {251--255},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a27/}
}
TY  - JOUR
AU  - D. K. Potapov
TI  - On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 251
EP  - 255
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a27/
LA  - ru
ID  - VSGTU_2012_1_a27
ER  - 
%0 Journal Article
%A D. K. Potapov
%T On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 251-255
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a27/
%G ru
%F VSGTU_2012_1_a27
D. K. Potapov. On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 251-255. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a27/