On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 251-255.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence of solutions of eigenvalue problems for elliptic equations of the second order with nonlinearity discontinuous with respect to a phase variable. Using the variational method, we receive the theorems on number of solutions for investigated problems. M. A. Gol'dshtik's problem on separated flows of incompressible fluid is considered as an appendix.
Keywords: boundary value problems, eigenvalue problems, discontinuous nonlinearity, variational method, number of solutions.
Mots-clés : elliptic equations
@article{VSGTU_2012_1_a27,
     author = {D. K. Potapov},
     title = {On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {251--255},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a27/}
}
TY  - JOUR
AU  - D. K. Potapov
TI  - On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 251
EP  - 255
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a27/
LA  - ru
ID  - VSGTU_2012_1_a27
ER  - 
%0 Journal Article
%A D. K. Potapov
%T On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 251-255
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a27/
%G ru
%F VSGTU_2012_1_a27
D. K. Potapov. On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 251-255. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a27/

[1] Pavlenko V. N., Potapov D. K., “Existence of a ray of eigenvalues for equations with discontinuous operators”, Siberian Math. J., 42:4 (2001), 766–773 | DOI | MR | Zbl

[2] Potapov D. K., “On an existence of a ray of eigenvalues for equations of elliptic type with discontinuous nonlinearities in a critical case”, Vestn. St. Petersburg Univ. Ser. 10, 2004, no. 4, 125–132

[3] Potapov D. K., “On an upper bound for the value of the bifurcation parameter in eigenvalue problems for elliptic equations with discontinuous nonlinearities”, Differ. Equ., 44:5 (2008), 737–739 | DOI | MR | Zbl

[4] Potapov D. K., “On the eigenvalue set structure for higher-order equations of elliptic type with discontinuous nonlinearities”, Differ. Equ., 46:1 (2010), 155–157 | DOI | MR | Zbl

[5] Krasnosel'skiy M. A., Pokrovskiy A. V., “Regular solutions of equations with discontinuous nonlinearities”, Dokl. AN SSSR, 226:3 (1976), 506–509 | MR

[6] Gol'dshtik M. A., “A mathematical model of separated flows in an incompressible liquid”, Dokl. AN SSSR, 147:6 (1962), 1310–1313

[7] Chang K. C., “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. Appl., 80:1 (1981), 102–129 | DOI | MR | Zbl

[8] Lavrent'ev M. A., The variational method in boundary-value problems for systems of equations of elliptic type, AN SSSR, Moscow, 1962, 136 pp. | MR

[9] Vainshtein I. I., Yurovskii V. K., “Attachment of eddy flows of an ideal fluid”, J. Appl. Mech. Tech. Phys., 17:5 (1976), 678–679 | DOI

[10] Titov O. V., “Variational approach for plane problems of matching potential and vortical flows”, J Appl. Math. Mech., 41:2 (1977), 365–368 | DOI

[11] Potapov D. K., “A mathematical model of separated flows in an incompressible fluid”, Izv. RAEN. Ser. MMMIU, 8:3–4 (2004), 163–170

[12] Vainshtein I. I., “The dual problem to M. A. Goldshtik problem with arbitrary vorticity”, J. Sib. Fed. Univ. Math. Phys., 3:4 (2010), 500–506

[13] Vainshtein I. I., “Solution of two dual problems of gluing vorter and potential flows by M. A. Goldshtick variational method”, J. Sib. Fed. Univ. Math. Phys., 4:3 (2011), 320–331