Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_1_a26, author = {J. O. Yakovleva}, title = {The analogue of {D'Alembert} formula for hyperbolic differential equation of the third order with nonmultiple characteristics}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {247--250}, publisher = {mathdoc}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a26/} }
TY - JOUR AU - J. O. Yakovleva TI - The analogue of D'Alembert formula for hyperbolic differential equation of the third order with nonmultiple characteristics JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 247 EP - 250 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a26/ LA - ru ID - VSGTU_2012_1_a26 ER -
%0 Journal Article %A J. O. Yakovleva %T The analogue of D'Alembert formula for hyperbolic differential equation of the third order with nonmultiple characteristics %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 247-250 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a26/ %G ru %F VSGTU_2012_1_a26
J. O. Yakovleva. The analogue of D'Alembert formula for hyperbolic differential equation of the third order with nonmultiple characteristics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 247-250. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a26/
[1] Tihonov A. N., Samarskiy A. A., Equations of mathematical physics, Nauka, Moscow, 1972, 735 pp. | MR | Zbl
[2] Bitsadze A. V., Equations of mathematical physics, Nauka, Moscow, 1982, 336 pp. | MR
[3] Andreev A. A., Yakovleva J. O., “The Goursat problem for one hyperbolic system of the third order differential equations with two independent variables”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 3(24), 35–41 | DOI
[4] Andreev A. A., “On the correctness of boundary value problems for some partial differential equations with a Carleman shift”, Differential Equations and Their Applications, Proc. of the Second International Seminar, Samar. Un-t, Samara, 1998, 5–18
[5] Egorov Yu. V., Linear differential equations of principal type, Nauka, Moscow, 1984, 360 pp. | MR