The analogue of D'Alembert formula for hyperbolic differential equation of the third order with nonmultiple characteristics
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 247-250.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem for the third order hyperbolic differential equation with nonmultiple characteristics is considered. The analogue of D'Alembert formula is obtained as a solution that allows describing the propagation of initial displacement, initial velocity and initial acceleration.
Keywords: hyperbolic differential equation of the third order, nonmultiple characteristics, Cauchy problem
Mots-clés : D'Alembert formula.
@article{VSGTU_2012_1_a26,
     author = {J. O. Yakovleva},
     title = {The analogue of {D'Alembert} formula for hyperbolic differential equation of the third order with nonmultiple characteristics},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {247--250},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a26/}
}
TY  - JOUR
AU  - J. O. Yakovleva
TI  - The analogue of D'Alembert formula for hyperbolic differential equation of the third order with nonmultiple characteristics
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 247
EP  - 250
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a26/
LA  - ru
ID  - VSGTU_2012_1_a26
ER  - 
%0 Journal Article
%A J. O. Yakovleva
%T The analogue of D'Alembert formula for hyperbolic differential equation of the third order with nonmultiple characteristics
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 247-250
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a26/
%G ru
%F VSGTU_2012_1_a26
J. O. Yakovleva. The analogue of D'Alembert formula for hyperbolic differential equation of the third order with nonmultiple characteristics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 247-250. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a26/

[1] Tihonov A. N., Samarskiy A. A., Equations of mathematical physics, Nauka, Moscow, 1972, 735 pp. | MR | Zbl

[2] Bitsadze A. V., Equations of mathematical physics, Nauka, Moscow, 1982, 336 pp. | MR

[3] Andreev A. A., Yakovleva J. O., “The Goursat problem for one hyperbolic system of the third order differential equations with two independent variables”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 3(24), 35–41 | DOI

[4] Andreev A. A., “On the correctness of boundary value problems for some partial differential equations with a Carleman shift”, Differential Equations and Their Applications, Proc. of the Second International Seminar, Samar. Un-t, Samara, 1998, 5–18

[5] Egorov Yu. V., Linear differential equations of principal type, Nauka, Moscow, 1984, 360 pp. | MR