Economy method for multiple solving augmented regularized normal system of equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 214-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, a new numerical algorithm for solving augmented regularized normal system of equations with several regularization parameters is proposed. The computational costs and the required amount of RAM of the proposed algorithm are analyzed. The proposed numerical algorithm is compared with the algorithm based on the singular value decomposition.
Keywords: ill-posed problems, augmented regularized normal system of equations, numerical algorithm.
@article{VSGTU_2012_1_a22,
     author = {V. V. Dolishniy and A. I. Zhdanov},
     title = {Economy method for multiple solving augmented regularized normal system of equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {214--222},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a22/}
}
TY  - JOUR
AU  - V. V. Dolishniy
AU  - A. I. Zhdanov
TI  - Economy method for multiple solving augmented regularized normal system of equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 214
EP  - 222
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a22/
LA  - ru
ID  - VSGTU_2012_1_a22
ER  - 
%0 Journal Article
%A V. V. Dolishniy
%A A. I. Zhdanov
%T Economy method for multiple solving augmented regularized normal system of equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 214-222
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a22/
%G ru
%F VSGTU_2012_1_a22
V. V. Dolishniy; A. I. Zhdanov. Economy method for multiple solving augmented regularized normal system of equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 214-222. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a22/

[1] Beklemishev D. V., Additional Chapters of Linear Algebra, Nauka, Moscow, 1983, 336 pp. | MR | Zbl

[2] Morozov V. A., Regular Methods for Solving Ill-Posed Problems, Nauka, Moscow, 1987, 240 pp. | MR

[3] Chung J., Nagy J. G., O'Leary D. P., “A weighted-GCV method for Lanczos-hybrid regularization”, Electron. Trans. Numer. Anal., 28:12 (2008), 149–167 | MR

[4] Zhdanov A. I., “About one numerical stable algorithm for solving system linear algebraic equations of defect rank”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2008, no. 1(16), 149–153 | DOI

[5] Golub G., Van Loan C., Matrix Computations, Mir, Moscow, 1999, 548 pp.

[6] Björck Å., “Least Squares Methods \year 1990”, Handbook of Numerical Analysis, v. I, Solution of Equations in $\mathbb R^n$. Part 1., eds. P. G. Ciarlet and J. L. Lions, Elsevier/North Holland, Amsterdam, 466–647 | MR