Forced oscillation of piezoceramic cylinder with circumpolarization of material
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 198-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonstationary elasto-electrodynamics problem for an anisotropic piezoceramic cylinder of finite size with circumpolarization of material is considered for the case when the tangential stresses and the electric potential influence on the radial outside of the cylinder as the arbitrary functions of axial coordinate and time. The new closed solution is obtained by the method of expansion in vector eigenfunctions in the form of structural algorithm of finite transformations. The constructed algorithm allows to determine the eigenfrequencies, stress-strain state of the element, and all the components of the induced electric field.
Keywords: coupled problem of electric elasticity, cylinder of final sizes, axisymmetric dynamic load.
@article{VSGTU_2012_1_a20,
     author = {D. A. Shlyakhin},
     title = {Forced oscillation of piezoceramic cylinder with circumpolarization of material},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {198--207},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a20/}
}
TY  - JOUR
AU  - D. A. Shlyakhin
TI  - Forced oscillation of piezoceramic cylinder with circumpolarization of material
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 198
EP  - 207
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a20/
LA  - ru
ID  - VSGTU_2012_1_a20
ER  - 
%0 Journal Article
%A D. A. Shlyakhin
%T Forced oscillation of piezoceramic cylinder with circumpolarization of material
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 198-207
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a20/
%G ru
%F VSGTU_2012_1_a20
D. A. Shlyakhin. Forced oscillation of piezoceramic cylinder with circumpolarization of material. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 198-207. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a20/

[1] Parton V. Z., Kudriavcev B. A., Electromagnetoelasticity of Piezoelectric and Electroconductive Bodies, Nauka, Moscow, 1988, 470 pp.

[2] Grinchenko V. T., Ulitko A. F., Shul'ga N. A., Mechanics of Coupled Fields in Structural Elements, v. 5, Electroelasticity, Nauk. Dumka, Kiev, 1989, 279 pp. | Zbl

[3] Shul'ga N. A., Bolkisev A. M., Vibrations of Piezoelectric Bodies, Nauk. Dumka, Kiev, 1990, 2228 pp. | Zbl

[4] Senitskii Yu. E., “The dynamic problem of electroelasticity for a non-homogeneous cylinder”, J. Appl. Math. Mech., 57:1 (1993), 133–139 | DOI | MR

[5] Ermolov I. N., Ultrasonic transducers for nondestructive testing, Mashinostroenie, Moscow, 1986, 280 pp.

[6] Senitskii Yu. E., “A multicomponent generalized finite integral transformation and its application to nonstationary problems in mechanics”, Soviet Math. (Iz. VUZ), 35:4 (1991), 55–61 | MR

[7] Tamm I. E., Basic Theory of Electricity, Nauka, Moscow, 1989, 504 pp.