On some class of functional-differential equations
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 31-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

{In this paper we consider special functional-differential equations arising in geometry for the metric functions. We prove a theorem on the form of the metric functions.
Keywords: functional-differential equation, metric function, phenomenologically symmetric geometry, Helmholtz's geometry.
@article{VSGTU_2012_1_a2,
     author = {V. A. Kyrov},
     title = {On some class of functional-differential equations},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {31--38},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a2/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - On some class of functional-differential equations
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 31
EP  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a2/
LA  - ru
ID  - VSGTU_2012_1_a2
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T On some class of functional-differential equations
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 31-38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a2/
%G ru
%F VSGTU_2012_1_a2
V. A. Kyrov. On some class of functional-differential equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 31-38. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a2/

[1] Kyrov V. A., “Two-Dimensional Helmholtz Spaces”, Siberian Math. J., 46:6 (2005), 1082–1096 | DOI | MR | Zbl

[2] Lev V. Kh., “Three-Dimensional Geometries in Physical Structures Theory”, Vychislitel'nye Sistemy. Issue 125, IM SOAN SSSR, Novosibirsk, 1988, 90–103 | MR

[3] Mikhailichenko G. G., “On Group and Phenomenological Symmetries in Geometry”, Dokl. Soviet. Math, 27:2 (1983), 325–329 | MR | Zbl

[4] Ovsjannikov L. V., Group analysis of differential equations, Nauka, Moscow, 1978, 399 pp. | MR

[5] Kyrov V. A., Six-dimensional Lie algebras of movements groups three-dimensional phenomenologically symmetric geometries. Appendix to the book: G. G. Mikhailichenko, “Polymetric Geometries”, Novosib. Gos. Un-t, Novosibirsk, 2001, 116–143

[6] Kyrov V. A., “Functional equations in pseudo-Euclidean geometry”, Sib. Zh. Ind. Mat., 13:4 (2010), 38–51 | MR | Zbl