Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_1_a2, author = {V. A. Kyrov}, title = {On some class of functional-differential equations}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {31--38}, publisher = {mathdoc}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a2/} }
TY - JOUR AU - V. A. Kyrov TI - On some class of functional-differential equations JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 31 EP - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a2/ LA - ru ID - VSGTU_2012_1_a2 ER -
V. A. Kyrov. On some class of functional-differential equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 31-38. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a2/
[1] Kyrov V. A., “Two-Dimensional Helmholtz Spaces”, Siberian Math. J., 46:6 (2005), 1082–1096 | DOI | MR | Zbl
[2] Lev V. Kh., “Three-Dimensional Geometries in Physical Structures Theory”, Vychislitel'nye Sistemy. Issue 125, IM SOAN SSSR, Novosibirsk, 1988, 90–103 | MR
[3] Mikhailichenko G. G., “On Group and Phenomenological Symmetries in Geometry”, Dokl. Soviet. Math, 27:2 (1983), 325–329 | MR | Zbl
[4] Ovsjannikov L. V., Group analysis of differential equations, Nauka, Moscow, 1978, 399 pp. | MR
[5] Kyrov V. A., Six-dimensional Lie algebras of movements groups three-dimensional phenomenologically symmetric geometries. Appendix to the book: G. G. Mikhailichenko, “Polymetric Geometries”, Novosib. Gos. Un-t, Novosibirsk, 2001, 116–143
[6] Kyrov V. A., “Functional equations in pseudo-Euclidean geometry”, Sib. Zh. Ind. Mat., 13:4 (2010), 38–51 | MR | Zbl