Neural network training acceleration using NVIDIA CUDA technology for image recognition
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 183-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, an implementation of neural network trained by algorithm based on Levenberg-Marquardt method is presented. Training of neural network increased by almost 9 times using NVIDIA CUDA technology. Implemented neural network is used for the recognition of noised images.
Keywords: Image recognition, neural networks, graphics processing unit, CUDA.
Mots-clés : Levenberg-Marquardt method
@article{VSGTU_2012_1_a18,
     author = {A. A. Fertsev},
     title = {Neural network training acceleration using {NVIDIA} {CUDA} technology for image recognition},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {183--191},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a18/}
}
TY  - JOUR
AU  - A. A. Fertsev
TI  - Neural network training acceleration using NVIDIA CUDA technology for image recognition
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 183
EP  - 191
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a18/
LA  - ru
ID  - VSGTU_2012_1_a18
ER  - 
%0 Journal Article
%A A. A. Fertsev
%T Neural network training acceleration using NVIDIA CUDA technology for image recognition
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 183-191
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a18/
%G ru
%F VSGTU_2012_1_a18
A. A. Fertsev. Neural network training acceleration using NVIDIA CUDA technology for image recognition. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 183-191. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a18/

[1] Mashor M. Y., Sulaiman S. N., “Recognition of Noisy Numerals using Neural Network”, IJCIM, 9:3 (2001), 158–164

[2] Boureau Y.-L., Bach F., LeCun Y., Ponce J., “Learning mid-level features for recognition”, IEEE Conference on Computer Vision and Pattern Recognition, 2010, 2559–2566 | DOI

[3] Hagan M. T., Menhaj M., “Training feedforward networks with the Marquardt algorithm”, IEEE Transactions on Neural Networks, 5:6 (1994), 989–993 | DOI

[4] Wilamowski B. M., Chen Y., Malinowski A., “Efficient algorithm for training neural networks with one hidden layer”, International Joint Conference on Neural Networks (IJCNN '99), v. 3, 1999, 1725–1728 | DOI

[5] Marquardt D., “An Algorithm for Least-Squares Estimation of Nonlinear Parameters”, SIAM J. Appl. Math., 11:2 (1963), 431–441 | DOI | MR | Zbl

[6] David J. C. MacKay, “A practical Bayesian framework for backpropagation networks”, Neural Computation, 4:3 (1992), 448–472 | DOI

[7] Poland J., On the Robustness of update strategies for the Bayesian hyperparameter alpha, available on: , 2001 http://www-alg.ist.hokudai.ac.jp/~jan/alpha.pdf

[8] Nguyen D., Widrow B., “Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights”, International Joint Conference on Neural Networks, v. 3, 1990, 21–26 | DOI

[9] Izotov P. Yu., Sukhanov S. V., Golovashkin D. L., “Technology of implementation of neural network algorithm in CUDA environment at the example of handwritten digits recognition”, Komp'yuternaya optika, 34:2 (2010), 243–252

[10] Gonzalez R. C., Woods R. E., Digital Image Processing, Addison-Wesley Publishing Company, Boston, MA, 1992, 528 pp.