Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_1_a18, author = {A. A. Fertsev}, title = {Neural network training acceleration using {NVIDIA} {CUDA} technology for image recognition}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {183--191}, publisher = {mathdoc}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a18/} }
TY - JOUR AU - A. A. Fertsev TI - Neural network training acceleration using NVIDIA CUDA technology for image recognition JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 183 EP - 191 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a18/ LA - ru ID - VSGTU_2012_1_a18 ER -
%0 Journal Article %A A. A. Fertsev %T Neural network training acceleration using NVIDIA CUDA technology for image recognition %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 183-191 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a18/ %G ru %F VSGTU_2012_1_a18
A. A. Fertsev. Neural network training acceleration using NVIDIA CUDA technology for image recognition. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 183-191. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a18/
[1] Mashor M. Y., Sulaiman S. N., “Recognition of Noisy Numerals using Neural Network”, IJCIM, 9:3 (2001), 158–164
[2] Boureau Y.-L., Bach F., LeCun Y., Ponce J., “Learning mid-level features for recognition”, IEEE Conference on Computer Vision and Pattern Recognition, 2010, 2559–2566 | DOI
[3] Hagan M. T., Menhaj M., “Training feedforward networks with the Marquardt algorithm”, IEEE Transactions on Neural Networks, 5:6 (1994), 989–993 | DOI
[4] Wilamowski B. M., Chen Y., Malinowski A., “Efficient algorithm for training neural networks with one hidden layer”, International Joint Conference on Neural Networks (IJCNN '99), v. 3, 1999, 1725–1728 | DOI
[5] Marquardt D., “An Algorithm for Least-Squares Estimation of Nonlinear Parameters”, SIAM J. Appl. Math., 11:2 (1963), 431–441 | DOI | MR | Zbl
[6] David J. C. MacKay, “A practical Bayesian framework for backpropagation networks”, Neural Computation, 4:3 (1992), 448–472 | DOI
[7] Poland J., On the Robustness of update strategies for the Bayesian hyperparameter alpha, available on: , 2001 http://www-alg.ist.hokudai.ac.jp/~jan/alpha.pdf
[8] Nguyen D., Widrow B., “Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights”, International Joint Conference on Neural Networks, v. 3, 1990, 21–26 | DOI
[9] Izotov P. Yu., Sukhanov S. V., Golovashkin D. L., “Technology of implementation of neural network algorithm in CUDA environment at the example of handwritten digits recognition”, Komp'yuternaya optika, 34:2 (2010), 243–252
[10] Gonzalez R. C., Woods R. E., Digital Image Processing, Addison-Wesley Publishing Company, Boston, MA, 1992, 528 pp.