The criterion for space-age organization of stand
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 175-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

A statistical criterion for randomness of spatial tree patterns in stands with account of trees age is proposed. Interpretation of the criterion statistic and numerical experiments on collected spatial data are presented.
Keywords: vegetation cover dynamics, spatial organization of stand, randomness criterion.
@article{VSGTU_2012_1_a17,
     author = {D. E. Kislov and A. N. Prilutsky},
     title = {The criterion for space-age organization of stand},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {175--182},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a17/}
}
TY  - JOUR
AU  - D. E. Kislov
AU  - A. N. Prilutsky
TI  - The criterion for space-age organization of stand
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 175
EP  - 182
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a17/
LA  - ru
ID  - VSGTU_2012_1_a17
ER  - 
%0 Journal Article
%A D. E. Kislov
%A A. N. Prilutsky
%T The criterion for space-age organization of stand
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 175-182
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a17/
%G ru
%F VSGTU_2012_1_a17
D. E. Kislov; A. N. Prilutsky. The criterion for space-age organization of stand. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 175-182. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a17/

[1] Ripley B. D., “Modelling spatial patterns. With discussion”, J. Roy. Statist. Soc. Ser. B, 39:2 (1977), 172–212 | MR

[2] Ripley B. D., “Tests of ‘randomness’ for spatial point patterns”, J. Roy. Statist. Soc. Ser. B, 41 (1979), 368–374 | Zbl

[3] Clark P. J., Evans F. C., “Distance to nearest neighbor as a measure of spatial relationships in populations”, Ecology, 35:4 (1954), 445–453 | DOI

[4] Ripley B. D., “The Second-Order Analysis of Stationary Point Processes”, J. Appl. Probability, 13:2 (1976), 255–266 | DOI | MR | Zbl

[5] Diggle P. J., Statistical analysis of spatial point patterns, Mathematics in Biology, IX, Academic Press, London, New York etc., 1983, 148 pp. | MR

[6] Marcon E., Puech F., “Measures of the geographic concentration of industries: improving distance-based methods”, J. Econ. Geogr., 10:5 (2009), 745–762, Cahiers de la MSE | DOI

[7] Kolmogorov A., Petrovskii I., Piscounov N., “A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem”, Selected Works of A. N. Kolmogorov, v. I, ed. V. M. Tikhomirov, Kluwer Academic Publishers, Amsterdam, 1991, 248–270 | MR

[8] Svirezhev Yu. M., Nonlinear waves, dissipative structures and catastrophes in ecology, Nauka, Moscow, 1987, 367 pp. | MR

[9] Kobzar' A. I., Applied Mathematical Statistics for engineers and scientists, Fizmatlit, Moscow, 2003, 853 pp.

[10] Härdle W., Simar L., Applied multivariate statistical analysis, Springer Verlag, Berlin, 2003, 486 pp. | MR | Zbl