Parametric identification of Cauchy problem for one fractional differential equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 157-165.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method for parametric identification of Cauchy problem for a fractional differential equation with fractional differential operator of $\alpha \in (0, 1)$ degree according to instantaneous values of experimental observations is suggested. The method is based on computation of mean-square estimations for coefficients of linear parametric discrete model of approximation function. Numerically-analytical investigations have been done, the results let us conclude about high efficiency of the method.
Keywords: fractional differential operators, parametric identification, linear parametric discrete model, difference equation.
@article{VSGTU_2012_1_a15,
     author = {A. S. Ovsienko},
     title = {Parametric identification of {Cauchy} problem for one fractional differential equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {157--165},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a15/}
}
TY  - JOUR
AU  - A. S. Ovsienko
TI  - Parametric identification of Cauchy problem for one fractional differential equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 157
EP  - 165
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a15/
LA  - ru
ID  - VSGTU_2012_1_a15
ER  - 
%0 Journal Article
%A A. S. Ovsienko
%T Parametric identification of Cauchy problem for one fractional differential equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 157-165
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a15/
%G ru
%F VSGTU_2012_1_a15
A. S. Ovsienko. Parametric identification of Cauchy problem for one fractional differential equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 157-165. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a15/

[1] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, ed. J. van Mill, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl

[2] Ogorodnikov E. N., “Some Aspects of Initial Value Problems Theory for Differential Equations with Riemann–Liouville Derivatives”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 5(21), 10–23 | DOI

[3] Ogorodnikov E. N., Yashagin N. S., “Some Special Functions in the Solution To Cauchy Problem for a Fractional Oscillating Equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 1(18), 276–279 | DOI

[4] Dzhrbashyan M. M., Integral transforms and representation of functions in the complex domain, Nauka, Moscow, 1966, 672 pp. | MR

[5] Zoteev V. E., Ovsienko A. S., “Parametric identification of the fractional oscillator based on difference equation”, Proceedings of the Sixth All-Russian Scientific Conference with international participation (1–4 June 2009). Part 4, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2009, 61–69

[6] Zoteev V. E., Parametric identification of dissipative mechanical systems based on difference equations, ed. V. P. Radchenko, Mashinostroenie-1, Moscow, 2009, 344 pp.