Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_1_a14, author = {S. V. Gorbunov}, title = {Mathematical model of~viscoelastic softening material with~exponential creep kernel}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {150--156}, publisher = {mathdoc}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a14/} }
TY - JOUR AU - S. V. Gorbunov TI - Mathematical model of~viscoelastic softening material with~exponential creep kernel JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 150 EP - 156 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a14/ LA - ru ID - VSGTU_2012_1_a14 ER -
%0 Journal Article %A S. V. Gorbunov %T Mathematical model of~viscoelastic softening material with~exponential creep kernel %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 150-156 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a14/ %G ru %F VSGTU_2012_1_a14
S. V. Gorbunov. Mathematical model of~viscoelastic softening material with~exponential creep kernel. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 150-156. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a14/
[1] Rabotnov Yu. N., Creep of Structural Elements, Nauka, Moscow, 1966, 752 pp. | Zbl
[2] Radchenko V. P., Pavlova G. A., Gorbunov S. V., “Stability by Lyapunov of solutions in endochronic plasticity theory without fluidity surface in flat tension conditions”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2008, no. 2(17), 143–151 | DOI
[3] Radchenko V. P., Eremin Yu. A., Rheological Deformation and Failure of Materials and Structural Elements, Mashinostroenie-1, Moscow, 2004, 264 pp.
[4] Ibragimov V. A., Klyushnikov V. D., “Some problems for media with an incident diagram”, Izv. AN SSSR. MTT, 1971, no. 4, 116–121
[5] Kadashevich Yu. I., “The theory of plasticity and creep taking into account the microfracture”, Dokl. AN SSSR, 266:6 (1982), 1341–1344
[6] Lebedev A. A., Chausov N. G., “Phenomenological fundamentals of the evaluation of crack resistance of materials on the basis of parameters of falling portions of strain diagrams”, Strength of Materials, 15:2, 155–160 | DOI | Zbl
[7] Novozhilov V. V., Kadashevich Yu. I., Microstresses in Structural Materials, Mashinostroenie, Leningrad, 1990, 223 pp.
[8] Kadashevich Yu. I., Pomytkin S. P., “Endochronic theory of inelasticity for softening materials with regard to large deformations”, Modern problems of resource materials and structures, MAMI, Moscow, 2009, 158–165
[9] Struzhanov V. V., “The properties of softening materials and constitutive relations under uniaxial stress state”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2007, no. 2(15), 69–78 | DOI
[10] Struzhanov V. V., Mironov V. I., Deformational Softening of Material in Structural Elements, UrO RAN, Ekaterinburg, 1995, 191 pp.
[11] Struzhanov V. V., Bakhareva E. A., “Iterative procedures of equilibrium parameters estimation and process stability of pure bending of beams from soft and brittle weakening materials”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1(20), 84–95 | DOI
[12] Samarin Yu. P., Equation of State for Materials with Complex Rheological Properties, Kuibyshev State Univ., Kuibyshev, 1979, 84 pp.
[13] Zgizherin S. V., Struzhanov V. V., Mironov V. I., “Iterative computational methods of calculating stresses for a pure bending of a beam of a damageable material”, Vychisl. Tekhnol., 6:5 (2001), 24–33 | Zbl