Mathematical model of~viscoelastic softening material with~exponential creep kernel
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 150-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

The variant of mathematical model of uniaxial strain for viscoelastic material with exponential creep kernel is proposed. Lyapunov stability of the solution of the model in case of permanent stress is investigated. The stability region of solutions of mathematical model's differential equations, сorresponding to asymptotically restricted creep of material, is established. Instability region of solutions is in accord with appearance of tertiary creep. Relation between stability of solutions by Lyapunov and stability of iterative calculation for numerical solving the system of equations is established. As an illustration the investigation of model problem is quoted.
Keywords: viscoelastic material, Lyapunov stability of solutions, exponential creep kernel, stability region of solutions, tertiary creep, stability of numerical iterative calculation.
@article{VSGTU_2012_1_a14,
     author = {S. V. Gorbunov},
     title = {Mathematical model of~viscoelastic softening material with~exponential creep kernel},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {150--156},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a14/}
}
TY  - JOUR
AU  - S. V. Gorbunov
TI  - Mathematical model of~viscoelastic softening material with~exponential creep kernel
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 150
EP  - 156
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a14/
LA  - ru
ID  - VSGTU_2012_1_a14
ER  - 
%0 Journal Article
%A S. V. Gorbunov
%T Mathematical model of~viscoelastic softening material with~exponential creep kernel
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 150-156
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a14/
%G ru
%F VSGTU_2012_1_a14
S. V. Gorbunov. Mathematical model of~viscoelastic softening material with~exponential creep kernel. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 150-156. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a14/

[1] Rabotnov Yu. N., Creep of Structural Elements, Nauka, Moscow, 1966, 752 pp. | Zbl

[2] Radchenko V. P., Pavlova G. A., Gorbunov S. V., “Stability by Lyapunov of solutions in endochronic plasticity theory without fluidity surface in flat tension conditions”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2008, no. 2(17), 143–151 | DOI

[3] Radchenko V. P., Eremin Yu. A., Rheological Deformation and Failure of Materials and Structural Elements, Mashinostroenie-1, Moscow, 2004, 264 pp.

[4] Ibragimov V. A., Klyushnikov V. D., “Some problems for media with an incident diagram”, Izv. AN SSSR. MTT, 1971, no. 4, 116–121

[5] Kadashevich Yu. I., “The theory of plasticity and creep taking into account the microfracture”, Dokl. AN SSSR, 266:6 (1982), 1341–1344

[6] Lebedev A. A., Chausov N. G., “Phenomenological fundamentals of the evaluation of crack resistance of materials on the basis of parameters of falling portions of strain diagrams”, Strength of Materials, 15:2, 155–160 | DOI | Zbl

[7] Novozhilov V. V., Kadashevich Yu. I., Microstresses in Structural Materials, Mashinostroenie, Leningrad, 1990, 223 pp.

[8] Kadashevich Yu. I., Pomytkin S. P., “Endochronic theory of inelasticity for softening materials with regard to large deformations”, Modern problems of resource materials and structures, MAMI, Moscow, 2009, 158–165

[9] Struzhanov V. V., “The properties of softening materials and constitutive relations under uniaxial stress state”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2007, no. 2(15), 69–78 | DOI

[10] Struzhanov V. V., Mironov V. I., Deformational Softening of Material in Structural Elements, UrO RAN, Ekaterinburg, 1995, 191 pp.

[11] Struzhanov V. V., Bakhareva E. A., “Iterative procedures of equilibrium parameters estimation and process stability of pure bending of beams from soft and brittle weakening materials”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1(20), 84–95 | DOI

[12] Samarin Yu. P., Equation of State for Materials with Complex Rheological Properties, Kuibyshev State Univ., Kuibyshev, 1979, 84 pp.

[13] Zgizherin S. V., Struzhanov V. V., Mironov V. I., “Iterative computational methods of calculating stresses for a pure bending of a beam of a damageable material”, Vychisl. Tekhnol., 6:5 (2001), 24–33 | Zbl