Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_1_a13, author = {M. V. Shershneva}, title = {Calculation method for frame construction life prediction on the basis of creep and endurance of energy type}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {141--149}, publisher = {mathdoc}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a13/} }
TY - JOUR AU - M. V. Shershneva TI - Calculation method for frame construction life prediction on the basis of creep and endurance of energy type JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 141 EP - 149 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a13/ LA - ru ID - VSGTU_2012_1_a13 ER -
%0 Journal Article %A M. V. Shershneva %T Calculation method for frame construction life prediction on the basis of creep and endurance of energy type %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 141-149 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a13/ %G ru %F VSGTU_2012_1_a13
M. V. Shershneva. Calculation method for frame construction life prediction on the basis of creep and endurance of energy type. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 141-149. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a13/
[1] Rabotnov Yu. N., Creep of Structural Elements, Fizmatgiz, Moscow, 1966, 752 pp.
[2] Bolotin V. V., Prediction of service life for machines and structures, ASME Press, New York, 1989, 395 pp. | MR
[3] Lomakin V. A., Statistical Problems of the Mechanics of Solid Deformable Bodies, Nauka, Moscow, 1970, 139 pp. | Zbl
[4] Samarin Yu. P., “Use of stochastic equations in the theory of creep of materials”, Izv. AN. SSSR. MTT, 1974, no. 1, 88–94
[5] Thermal Resistance of Machine Parts, eds. I. A. Birger, B. F. Shorr, Mashinostroenie, Moscow, 1975, 456 pp.
[6] Badaev A. N., “Determination of the distribution function of the parameters of a creep equation of state”, Strength of Materials, 16:12 (1984), 1668–1673 | DOI
[7] Lokoshchenko A. M., Shesterikov S. A., “Method for description of creep and long-term strength with pure elongation”, J. Appl. Mech. Tech. Phys., 21:3 (1980), 414–417 | DOI
[8] Vil'deman V. É., Sokolkin Yu. V., Tashkinov A. A., Mechanics of inelastic deformation and fracture of composite materials, Nauka, Moscow, 1997, 228 pp. | MR
[9] Saraev L. A., Modelling of macroscopic plastic properties of multicomponent composite materials, Samarskiy Universitet, Samara, 2000, 181 pp. | Zbl
[10] Samarin Yu. P., “Stochastic Mechanical Properties and Reliability of Structures with Rheological Properties”, Creep and Long-Term Strength of Structures, KPtI, Kuibyshev, 1986, 8–17
[11] Radchenko V. P., Popov N. N., “Stochastic characteristics of stress and strain fields in steady-state creep of stochastically inhomogeneous plane”, Izv. Vuzov. Mashinostroenie, 2006, no. 2, 3–11
[12] Kovalenko L. V., Popov N. N., Radchenko V. P., “Solution of the plane stochastic creep boundary value problem”, J. Appl. Math. Mech., 73:6 (2009), 727–733 | DOI | MR | Zbl
[13] Isutkina V. N., Development of analytical methods for solving stochastic boundary value problems of steady-state creep for a flat strain state, Abstract of Ph. D. Thesis (Phys. Math.), Samara, 2007, 18 pp.
[14] Popov N. N., Radchenko V. P., “Nonlinear stochastic creep problem for an inhomogeneous plane with the damage to the material taken into account”, J. Appl. Mech. Tech. Phys., 48:2 (2007), 265–270 | DOI | Zbl
[15] Badaev A. N., Gelubovskii E. R., Baumshtein M. V., Bulygin I. P., “Statistical modeling of the creep characteristics of structural materials”, Strength of Materials, 14:5 (1982), 584–589 | DOI
[16] Badaev A. N., “Determination of the distribution function of the parameters of a creep equation of state”, Strength of Materials, 16:12 (1984), 1668–1673 | DOI
[17] Kovpak V. I., Badaev A. N., “A Unified Approach to the Prediction of Creep. Issues of Heat-Resistant Materials in the Statistical Aspect”, Unified Methods of Determining Creep and Creep-Rupture Strength, Izd-vo Standartov, Moscow, 1986, 51–62
[18] Radchenko V. P., “Prediction of creep and creep-rupture strength of materials on the basis of an energy approach in a stochastic formulation”, Strength of Materials, 24:2 (1992), 153–161 | DOI
[19] Isutkina V. N., Margaritov A. Yu., “A comparative analysis of solutions for stochastic boundary-value problem of the steady-state creep for thick-walled pipes on the basis of the small-parameter method and Monte Carlo simulation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2006, no. 43, 116–123 | DOI
[20] Samarin Yu.P., Pavlova G. A., Popov N. N., “Reliability estimation of beam structures by criterion of deformation type”, Probl. Mashinostr. Nadezhn. Mash., 1990, no. 4, 53–60
[21] Popov N. N., Pavlova G. A., Shershneva M. V., “Reliability estimation of stochastic heterogeneous rod constructional elements by the use of parametric failure criterion”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 5(21), 117–124 | DOI
[22] Radchenko V. P., Eremin Yu. A., Rheological Deformation and Fracture of Materials and Structural Members, Mashinostroenie-1, Moscow, 2004, 264 pp.
[23] Radchenko V. P., Kichaev P. E., Energetic concept of creep and cyclic strain-induced creep of metals, SamGTU, Samara, 2011, 157 pp.
[24] Sosnin O. V., Nikitenko A. F., Gorev B. V., “Definition of creep curves parameters by the presence of all stages of creep process”, Calculations and tests of strength. Calculated methods for determining the bearing capacity and durability of machine elements and structures. The method of creep curves parameters determination and the accumulation of damage under uniaxial loading, Methodological Specifications, VNIINMASh, Moscow, 1982, 49–54