Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_1_a10, author = {Yu. A. Bogan}, title = {Antiplane strain of a cylindrically anisotropic elastic bar}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {116--122}, publisher = {mathdoc}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a10/} }
TY - JOUR AU - Yu. A. Bogan TI - Antiplane strain of a cylindrically anisotropic elastic bar JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 116 EP - 122 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a10/ LA - ru ID - VSGTU_2012_1_a10 ER -
%0 Journal Article %A Yu. A. Bogan %T Antiplane strain of a cylindrically anisotropic elastic bar %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 116-122 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a10/ %G ru %F VSGTU_2012_1_a10
Yu. A. Bogan. Antiplane strain of a cylindrically anisotropic elastic bar. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 116-122. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a10/
[1] Lekhnitskii S. G., Torsion of Anisotropic and Inhomogeneous Rods, Nauka, Moscow, 1971, 240 pp. | Zbl
[2] Ting T. C., “The remarkable nature of cylindrically anisotropic elastic materials exemplified by an anti-plane deformation”, J. Elasticity, 49:3 (1998), 269–284 | DOI | MR | Zbl
[3] Li B., Liu Y. W., Fang Q. H., “Interaction of an anti-plane singularity with interfacial anti-cracks in cylindrically anisotropic composites”, Arch. Appl. Mech., 78:4 (2008), 295–309 | DOI | Zbl
[4] Prusov I. A., Some Problems of Thermoelasticity, BGU, Minsk, 1972, 200 pp.
[5] Landis E. M., Second order equations of elliptic and parabolic type, Nauka, Moscow, 1971, 288 pp. | MR | Zbl
[6] Piccinini L. C, Spagnolo S., “On the Hölder continuity of solutions of second order elliptic equations in two variables”, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser., 26:2 (1972), 391–402 | MR | Zbl