Antiplane strain of a cylindrically anisotropic elastic bar
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 116-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of antiplane deformation of general cylindrical anisotropic material is studied in this paper. Explicit solutions of Dirichlet and Neumann problems are given for a circular domain. The existence of unique weak solution of the Dirichlet problem in a bounded region with a piece-wise smooth boundary is proved.
Keywords: cylindrical anisotropy, elasticity.
@article{VSGTU_2012_1_a10,
     author = {Yu. A. Bogan},
     title = {Antiplane strain of a cylindrically anisotropic elastic bar},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {116--122},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a10/}
}
TY  - JOUR
AU  - Yu. A. Bogan
TI  - Antiplane strain of a cylindrically anisotropic elastic bar
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 116
EP  - 122
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a10/
LA  - ru
ID  - VSGTU_2012_1_a10
ER  - 
%0 Journal Article
%A Yu. A. Bogan
%T Antiplane strain of a cylindrically anisotropic elastic bar
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 116-122
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a10/
%G ru
%F VSGTU_2012_1_a10
Yu. A. Bogan. Antiplane strain of a cylindrically anisotropic elastic bar. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 116-122. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a10/

[1] Lekhnitskii S. G., Torsion of Anisotropic and Inhomogeneous Rods, Nauka, Moscow, 1971, 240 pp. | Zbl

[2] Ting T. C., “The remarkable nature of cylindrically anisotropic elastic materials exemplified by an anti-plane deformation”, J. Elasticity, 49:3 (1998), 269–284 | DOI | MR | Zbl

[3] Li B., Liu Y. W., Fang Q. H., “Interaction of an anti-plane singularity with interfacial anti-cracks in cylindrically anisotropic composites”, Arch. Appl. Mech., 78:4 (2008), 295–309 | DOI | Zbl

[4] Prusov I. A., Some Problems of Thermoelasticity, BGU, Minsk, 1972, 200 pp.

[5] Landis E. M., Second order equations of elliptic and parabolic type, Nauka, Moscow, 1971, 288 pp. | MR | Zbl

[6] Piccinini L. C, Spagnolo S., “On the Hölder continuity of solutions of second order elliptic equations in two variables”, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser., 26:2 (1972), 391–402 | MR | Zbl