On Cauchy Problem for system of $n$ Euler--Poisson--Darboux equations in the plane
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 21-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of Euler–Poisson–Darboux equations is considered, the Cauchy problem is solved for the case of real $n\times n$ matrix-coefficient with one real eigenvalue or two complex conjugate eigenvalues with real part in the interval $(-1/2, 1/2)$.
Keywords: Riemann method, Cauchy problem, partial differential equation
Mots-clés : system of Euler–Poisson–Darboux equations.
@article{VSGTU_2012_1_a1,
     author = {E. A. Maksimova},
     title = {On {Cauchy} {Problem} for system of $n$ {Euler--Poisson--Darboux} equations in the plane},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {21--30},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a1/}
}
TY  - JOUR
AU  - E. A. Maksimova
TI  - On Cauchy Problem for system of $n$ Euler--Poisson--Darboux equations in the plane
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 21
EP  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a1/
LA  - ru
ID  - VSGTU_2012_1_a1
ER  - 
%0 Journal Article
%A E. A. Maksimova
%T On Cauchy Problem for system of $n$ Euler--Poisson--Darboux equations in the plane
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 21-30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a1/
%G ru
%F VSGTU_2012_1_a1
E. A. Maksimova. On Cauchy Problem for system of $n$ Euler--Poisson--Darboux equations in the plane. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 21-30. http://geodesic.mathdoc.fr/item/VSGTU_2012_1_a1/

[1] Andreev A. A., “On a class of systems of differential equations of hyperbolic type”, Partial differential equations, Ryazan. Gos. Ped. Inst., Ryazan, 1980, 9–14 | MR

[2] Andreev A. A, Maksimova E. A., “The solution of the Cauchy problem for one hyperbolic system with singular characteristics”, Proceedings of the Eighth All-Russian Scientific Conference with international participation. Part 3, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2011, 11–17

[3] Maksimova E. A., “Solution of the Cauchy problem for system of the Euler–Poisson–Darboux equations”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 3(24), 167–170 | DOI

[4] Tyrtyshnikov E. E., “Matrix analysis and linear algebra”, Fizmatlit, Moscow, 2007, 480 pp.

[5] Bitsadze A. V., Equations of the Mixed Type, Pergamon Press, New York, 1964, 160 pp. | MR | Zbl | Zbl

[6] Lancaster P., Theory of Matrices, Academic Press, New York, 1969, 316 pp. ; Lankaster P., Teoriya matrits, Nauka, M., 1982, 272 pp. | MR | Zbl | MR

[7] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, eds. M. Abramowitz, I. A. Stegun, Dover, New York, 1972, 824 pp. ; Spravochnik po spetsialnym funktsiyam, eds. M. Abramovits, I. Stigan, Nauka, M., 1979, 832 pp. | MR | MR

[8] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, ed. H. Bateman, McGraw-Hill Book Co, Inc., New York – Toronto – London, 1953, 302 pp. ; Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. V 3-kh t, v. 1, Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973, 296 pp. | MR | Zbl | MR

[9] Gantmakher F. R., Theory of matrices, Nauka, Moscow, 549 pp. | MR | Zbl