@article{VSGTU_2012_128_3_a0,
author = {J. O. Takhirov and R. N. Turaev},
title = {The nonlocal {Stefan} problem for quasilinear parabolic equation},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {8--16},
year = {2012},
volume = {128},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_128_3_a0/}
}
TY - JOUR AU - J. O. Takhirov AU - R. N. Turaev TI - The nonlocal Stefan problem for quasilinear parabolic equation JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 8 EP - 16 VL - 128 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_128_3_a0/ LA - ru ID - VSGTU_2012_128_3_a0 ER -
%0 Journal Article %A J. O. Takhirov %A R. N. Turaev %T The nonlocal Stefan problem for quasilinear parabolic equation %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 8-16 %V 128 %N 3 %U http://geodesic.mathdoc.fr/item/VSGTU_2012_128_3_a0/ %G ru %F VSGTU_2012_128_3_a0
J. O. Takhirov; R. N. Turaev. The nonlocal Stefan problem for quasilinear parabolic equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 128 (2012) no. 3, pp. 8-16. http://geodesic.mathdoc.fr/item/VSGTU_2012_128_3_a0/
[1] Friedman A., Partial Differential Equations of Parabolic Type, Prentice-Hal, Englewood Cliffs, N.J., 1964, xiv+347 pp. ; Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968, 428 pp. | MR | Zbl
[2] Meyrmanov A. M., The Stefan problem, Nauka, Sibirsk. Otdel., Novosibirsk, 1986, 240 pp. | MR
[3] Rubinshteyn L. I., The Stefan problem, Zvaygzne, Riga, 1967, 468 pp. | MR
[4] Douglas J., Jr., “A uniqueness theorem for the solution of the Stefan problem”, Proc. Amer. Math. Soc., 8 (1952), 402–408 | DOI | MR
[5] Kyner W. T., “An existence and uniqueness theorem for a nonlinear Stefan problem”, J. Math. and Mech., 8:4 (1959), 483–498 | MR | Zbl
[6] Kruzhkov S. N., “Nonlinear parabolic equations in two independent variables”, Trudy Moskov. Matem. Obshch., 16 (1967), 329–346 | Zbl