Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2011_4_a6, author = {N. N. Popov and O. Chernova}, title = {Solution of nonlinear creep problem for stochastically inhomogeneous plane on the basis of the second approximation for small parameter method}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {50--58}, publisher = {mathdoc}, number = {4}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a6/} }
TY - JOUR AU - N. N. Popov AU - O. Chernova TI - Solution of nonlinear creep problem for stochastically inhomogeneous plane on the basis of the second approximation for small parameter method JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 50 EP - 58 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a6/ LA - ru ID - VSGTU_2011_4_a6 ER -
%0 Journal Article %A N. N. Popov %A O. Chernova %T Solution of nonlinear creep problem for stochastically inhomogeneous plane on the basis of the second approximation for small parameter method %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2011 %P 50-58 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a6/ %G ru %F VSGTU_2011_4_a6
N. N. Popov; O. Chernova. Solution of nonlinear creep problem for stochastically inhomogeneous plane on the basis of the second approximation for small parameter method. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2011), pp. 50-58. http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a6/
[1] Lomakin V. A., Statistical Problems of the Mechanics of Solid Deformable Bodies, Nauka, Moscow, 1970, 137 pp. | Zbl
[2] Lomakin V. A., “Problems of the mechanics of structurally nonurdform bodies”, Izv. AN SSSR. MTT, 1978, no. 6, 45–52
[3] Kuznetsov V. A., “Creep of stochastically nonuniform media under conditions of a plane stress state”, Mathematical Physics (collected scientific papers), KPtI, Kuibyshev, 1977, 69–74
[4] Popov N. N., Samarin Yu. P., “Stress fields close to the boundary of a stochastically inhomogeneous half-plane during creep”, J. Appl. Mech. Tech. Phys., 29:1 (1988), 149–154 | DOI | MR
[5] Radchenko V. P., Popov N. N., “Statistical characteristics of the stress and strain fields at steady-state creep for stochastically inhomogeneous plane”, Izv. Vuzov. Mashinostroenie, 2006, no. 2, 3–11
[6] Kovalenko L. V., Popov N. N., Radchenko V. P., “Solution of the plane stochastic creep boundary value problem”, J. Appl. Math. Mech, 73:6, 727–733 | DOI | MR | Zbl
[7] Popov N. N., Zabelin S. A., “Solution of nonlinear stochastic creep problem the small parameter method in plane stress”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 43 (2006), 106–112 | DOI
[8] Popov N. N., Kovalenko L. V., Yashin M. A., “Solution of plane nonlinear stochastic problem with spectral representation method”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 2(19), 99–106 | DOI
[9] Wentzel E. S., Ovcharov L. A., Applied Problems in Probability Theory, Radio i Svyaz', Moscow, 1983, 416 pp.
[10] Pugachev V. S., Theory of Probability and Mathematical Statistics, Fizmatlit, Moscow, 2002, 496 pp. | MR | Zbl