Inversion and characterization of some potentials with the densities in $L^p$ in the non-elliptic case
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2011), pp. 43-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct the inversion of generalized Strichartz potentials with singularities of the kernels on a finite union of spheres in $\mathbb R^n$ with densities from space $L^p$, $1\leq p\leq 2$ and Hardy space $H^1$ in the non-elliptic case, when its symbols degenerate on a set of zero measure in $\mathbb R^n$. We also give the description of these potentials in terms of the inverting constructions.
Mots-clés : convolution, multiplier, distribution.
Keywords: oscillating symbol
@article{VSGTU_2011_4_a5,
     author = {A. V. Gil' and A. I. Zadorozhnyi and V. A. Nogin},
     title = {Inversion and characterization of some potentials with the densities in $L^p$ in the non-elliptic case},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {43--49},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a5/}
}
TY  - JOUR
AU  - A. V. Gil'
AU  - A. I. Zadorozhnyi
AU  - V. A. Nogin
TI  - Inversion and characterization of some potentials with the densities in $L^p$ in the non-elliptic case
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 43
EP  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a5/
LA  - ru
ID  - VSGTU_2011_4_a5
ER  - 
%0 Journal Article
%A A. V. Gil'
%A A. I. Zadorozhnyi
%A V. A. Nogin
%T Inversion and characterization of some potentials with the densities in $L^p$ in the non-elliptic case
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 43-49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a5/
%G ru
%F VSGTU_2011_4_a5
A. V. Gil'; A. I. Zadorozhnyi; V. A. Nogin. Inversion and characterization of some potentials with the densities in $L^p$ in the non-elliptic case. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2011), pp. 43-49. http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a5/

[1] Strichartz R. S., “Convolutions with kernels having singularities on a sphere”, Trans. Amer. Math. Soc., 146 (1970), 461–471 | DOI | MR

[2] Gil A. V., Nogin V. A., “Estimates for some potential-type operators with oscillating symbols”, Vladikavkaz. Mat. Zh., 12:3 (2010), 21–29 | MR | Zbl

[3] Gil A. V., Nogin V. A., “$H^p-H^q$ estimates for some potential-type operators with oscillating symbols”, Izv. vuzov. Sev.-Kav. Region, 2010, no. 5, 8–13

[4] Gil A. V., Zadorozhnyi A. I., Nogin V. A., “Estimates for some convolution operators with singularities of their kernels on spheres”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 2(23), 17–23 | DOI

[5] Miyachi A., “On some singular Fourier multipliers”, J. Fac. Sci. Univ. Tokyo., Sect. 1 A, Math., 28:2 (1981), 267–315 | MR | Zbl

[6] Samko S. G., Hypersingular integrals and their applications, Izd-vo Rostov. Un-ta, Rostov-na-Donu, 1984, 208 pp. | MR | Zbl

[7] Nogin V. A., Luzhetskaya P. A., “Inversion and description of the ranges of multiplier operators of Strichartz–Peral–Miyachi-type”, Fractional Calculus Applied Analysis, 3:1 (2000), 87–96 | MR | Zbl

[8] Stein E. M., Harmonic Analysis: Real-variable Method, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ., 1993, 695 pp. | MR | Zbl