Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2011_4_a4, author = {E. A. Kozlova}, title = {Damping problem for the hyperbolic equation with mixed derivative}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {37--42}, publisher = {mathdoc}, number = {4}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a4/} }
TY - JOUR AU - E. A. Kozlova TI - Damping problem for the hyperbolic equation with mixed derivative JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 37 EP - 42 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a4/ LA - ru ID - VSGTU_2011_4_a4 ER -
%0 Journal Article %A E. A. Kozlova %T Damping problem for the hyperbolic equation with mixed derivative %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2011 %P 37-42 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a4/ %G ru %F VSGTU_2011_4_a4
E. A. Kozlova. Damping problem for the hyperbolic equation with mixed derivative. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2011), pp. 37-42. http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a4/
[1] Butkovskiy A. G., Theory of optimal control of systems with distributed parameters, Nauka, Moscow, 1965, 474 pp. | MR
[2] Lions J. L., Contrôle optimal de systèmes gouvernés par des équalions aux dérivées partielles, Dunod Gauthier-Villars, Paris; Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp. | MR
[3] Il'in V. A., “Boundary control of oscillations on two ends in terms of the generalized solution of the wave equation with finite energy”, Differ. Equ., 36:11 (2000), 1659–1675 | DOI | MR | Zbl
[4] Il'in V. A., Moiseev E. I., “Boundary control of radially symmetric oscillations of a round membrane”, Dokl. RAN, 393:6 (2003), 730–734 | MR
[5] Borovskikh A. V., “Formulas for the boundary control of an inhomogeneous string. I”, Differ. Equ., 43:1 (2007), 69–95 | DOI | MR | Zbl
[6] Il'in V. A., Moiseev E. I., “Boundary control at two endpoints of a process described by the telegraph equation”, Dokl. RAN, 394:2 (2004), 154–158 | MR | Zbl
[7] Andreev A. A., Leksina S. V., “The boundary control problem for the system of wave equations”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2008, no. 1(16), 5–10 | DOI
[8] Andreev A. A., Leksina S. V., “A system of wave equations with boundary control of the first kind”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2008, no. 2(61), 10–21 | MR
[9] Andreev A. A., Leksina S. V., “Boundary control problem for the first boundary value problem for a second-order system of hyperbolic type”, Differ. Equ., 47:6 (2011), 848–854 | DOI | MR | Zbl
[10] Svetlitskiy B. A., Mechanics of Flexible Rods and Threads, Mashinostroenie, Moscow, 1978, 224 pp.
[11] Bitsadze A. V., Some classes of partial differential equations, Nauka, Moscow, 1981, 448 pp. | MR