Numerical simulation of modified Perona--Malik equantion in digital image denoising applications.
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2011), pp. 191-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

Classical Perona–Malik model is modified and adapted for digital color image filtering. An advantage of the proposed scheme is the use of perceptual color difference metrics to measure the distance between pixels, and the modification of diffusion coefficients calculation formulas. Numerical simulation shows that the proposed scheme has a high quality and performance.
Keywords: partial differential equations, Perona–Malik equation, image processing, image denoising.
@article{VSGTU_2011_4_a26,
     author = {A. A. Yudashkin and D. A. Zausaev and I. S. Ryabtsov},
     title = {Numerical simulation of modified {Perona--Malik} equantion in digital image denoising applications.},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {191--194},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a26/}
}
TY  - JOUR
AU  - A. A. Yudashkin
AU  - D. A. Zausaev
AU  - I. S. Ryabtsov
TI  - Numerical simulation of modified Perona--Malik equantion in digital image denoising applications.
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 191
EP  - 194
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a26/
LA  - ru
ID  - VSGTU_2011_4_a26
ER  - 
%0 Journal Article
%A A. A. Yudashkin
%A D. A. Zausaev
%A I. S. Ryabtsov
%T Numerical simulation of modified Perona--Malik equantion in digital image denoising applications.
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 191-194
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a26/
%G ru
%F VSGTU_2011_4_a26
A. A. Yudashkin; D. A. Zausaev; I. S. Ryabtsov. Numerical simulation of modified Perona--Malik equantion in digital image denoising applications.. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2011), pp. 191-194. http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a26/

[1] Hwu W. W., GPU Computing Gems Emerald Edition, Morgan Kaufmann, San Francisco, CA, 2011, 886 pp.

[2] Felsberg M., “On the Relation Between Anisotropic Diffusion and Iterated Adaptive Filtering”, LNCS, 5096 (2008), 436–445 | DOI | MR

[3] Rumpf M., Strzodka R., “Nonlinear Diffusion in Graphics Hardware”, Proceedings of EG/IEEE TCVG Symposium on Visualization (VisSym ’01), 2001, 75–84 | Zbl

[4] Schenke S., Wünsche B. C., Denzler J., “GPU-based volume segmentation”, Proceedings of IVCNZ ’05, 2005, 171–176

[5] Howison M., Comparing GPU Implementations of Bilateral and Anisotropic Diffusion Filters for 3D Biomedical Datasets, Technical Report LBNL-3425E, Lawrence Berkeley National Laboratory, Berkeley, CA, 2010, 9 pp.

[6] Perona P., Malik J., “Scale space and edge detection using anisotropic diffusion”, Proceedings of the IEEE Computer Society Workshop on Computer Vision, Miami, FL, 1987, 16–27

[7] Perona P., Malik J., “Scale-Space and Edge Detection Using Anisotropic Diffusion”, Pattern Anal. Mach. Intell., 12:7 (1990), 629–639 | DOI

[8] Gilboa G., Zeevi Y. Y., Sochen N., “Image enhancement segmentation and denoising by time dependent nonlinear diffusion processes”, Image Processing' 2001, v. 3, 2001, 134–137 | DOI

[9] Melgosa M., “Testing CIELAB-Based Color-Difference Formulas”, Color Research and Application, 25:1 (2000), 49–55 | 3.0.CO;2-4 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[10] Sharma G., Wu W., Dadal E. N., “The CIEDE2000 Color-Difference Formula: Implementation Notes, Supplementary Test Data, and Mathematical Observations”, Color research and application, 30:1 (2005), 21–30 | DOI