On one optimal control problem with a~penalty functional in general form
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2011), pp. 18-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

The sufficient conditions for the existence of optimal control over solutions of the initial-finish value problem for the linear equation with a penalty functional in general form are found.
Mots-clés : Sobolev type equation
Keywords: optimal control, initial-finish value problem.
@article{VSGTU_2011_4_a2,
     author = {N. A. Manakova and A. G. Dylkov},
     title = {On one optimal control problem with a~penalty functional in general form},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {18--24},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a2/}
}
TY  - JOUR
AU  - N. A. Manakova
AU  - A. G. Dylkov
TI  - On one optimal control problem with a~penalty functional in general form
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 18
EP  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a2/
LA  - ru
ID  - VSGTU_2011_4_a2
ER  - 
%0 Journal Article
%A N. A. Manakova
%A A. G. Dylkov
%T On one optimal control problem with a~penalty functional in general form
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 18-24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a2/
%G ru
%F VSGTU_2011_4_a2
N. A. Manakova; A. G. Dylkov. On one optimal control problem with a~penalty functional in general form. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2011), pp. 18-24. http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a2/

[1] Sviridyuk G. A., Fedorov V. E., Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht, Boston, 2003, 216 pp. | MR | Zbl

[2] Sviridyuk G. A., Zagrebina S. A., “The Showalter–Sidorov problem as a phenomena of the Sobolev type equations”, Izv. Irkut. Gos. Un-ta. Ser. Matematika, 3:1 (2010), 51–72

[3] Zamyshlyaeva A. A., Yuzeeva A. V., “The initial-finish value problem for the Boussinesque–Love equation defined on graph”, Izv. Irkut. Gos. Un-ta. Ser. Matematika, 3:2 (2010), 18–29

[4] Demidenko G. V., Uspenskii S. V., Partial differential equations and systems not solvable with respect to the highest-order derivative, CRC Press, New York, Basel, Hong Kong, 2003, 511 pp. | MR

[5] Sveshnikov A. G., Al'shanskiy A. B., Korpusov M. O., Pletner Yu. D., Linear and nonlinear equations of Sobolev type, Fizmatlit, Moscow, 736 pp.

[6] Keller A. V., “Numerical solution of start control problem for a Leontief type system of equations”, Obozrenie Priklad. Prom. Matematiki, 16:2 (2009), 345–346

[7] Manakova N. A., “Optimal control problem for the Oskolkov nonlinear filtration equation”, Differ. Equations, 43:9, 1213–1221 | DOI | MR | Zbl

[8] Lions J.-L., Optimal Control of Systems Governed by Partial Differential Equations, Mir, Moscow, 1972, 414 pp. | MR

[9] Fursikov A. V., Optimal Control of Distributed Systems. Theory and Applications, Nauchnaya Kniga, Novosibirsk, 1999, 350 pp.