Nonlinear equations with weighted potential type operators in Lebesgue spaces
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2011), pp. 160-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

By method of monotone operators, existence and uniqueness theorems are proved for some classes of nonlinear equations with weighted potential type operators in Lebesgue spaces.
Keywords: nonlinear equations, potential type operator, monotone operator.
@article{VSGTU_2011_4_a19,
     author = {S. N. Askhabov},
     title = {Nonlinear equations with weighted potential type operators in {Lebesgue} spaces},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {160--164},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a19/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Nonlinear equations with weighted potential type operators in Lebesgue spaces
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 160
EP  - 164
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a19/
LA  - ru
ID  - VSGTU_2011_4_a19
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Nonlinear equations with weighted potential type operators in Lebesgue spaces
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 160-164
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a19/
%G ru
%F VSGTU_2011_4_a19
S. N. Askhabov. Nonlinear equations with weighted potential type operators in Lebesgue spaces. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2011), pp. 160-164. http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a19/

[1] Askhabov S. N., Nonlinear equations of convolution type, Fizmatlit, Moscow, 2009, 304 pp. | MR

[2] Kolmogorov A. N., Fomin S. V., Elements of the Theory of Functions and Functional Analysis, Fizmatlit, Moscow, 2004, 570 pp.

[3] Askhabov S. N., “On a nonlinear equation with a potential-type weighing operator”, Proceedings of the Eighth All-Russian Scientific Conference with international participation. Part 3, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2011, 24–27

[4] Askhabov S. N., “Approximate solution of nonlinear equations with weighted potential type operators”, Ufimsk. Mat. Zh., 3:4 (2011), 8–13 | Zbl