Mixed problem with integral condition for the hyperbolic equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2011), pp. 154-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a nonlocal problem with integral condition of the first kind. Existence and uniqueness of a solution of this problem are proved. The proof is based on a priori estimates and auxiliary problem method.
Keywords: nonlocal problem, integral condition, a priori estimates.
@article{VSGTU_2011_4_a18,
     author = {N. D. Golubeva},
     title = {Mixed problem with integral condition for the hyperbolic equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {154--159},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a18/}
}
TY  - JOUR
AU  - N. D. Golubeva
TI  - Mixed problem with integral condition for the hyperbolic equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 154
EP  - 159
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a18/
LA  - ru
ID  - VSGTU_2011_4_a18
ER  - 
%0 Journal Article
%A N. D. Golubeva
%T Mixed problem with integral condition for the hyperbolic equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 154-159
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a18/
%G ru
%F VSGTU_2011_4_a18
N. D. Golubeva. Mixed problem with integral condition for the hyperbolic equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2011), pp. 154-159. http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a18/

[1] Pul'kina L. S., “A nonlocal problem with integral conditions for a hyperbolic equation”, Differ. Equ., 40:7 (2004), 947–953 | DOI | MR | Zbl

[2] Pul'kina L. S., “Nonlocal problem with integral conditions for one-dimensional wave equation”, Doklady Adygskoy (Cherkesskoy) mezhdunarodnoy akademii nauk, 12:2 (2010), 52–58

[3] Kozhanov A. I., Pul'kina L. S., “On the solvability of some boundary value problems with shift for linear hyperbolic equations”, Matematicheskiy zhurnal (Kazakhstan), 9:2 (2009), 78–92

[4] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, Nauka, Moscow, 1973, 407 pp. | MR

[5] Gȧrding L., Cauchy's problem for hyperbolic equations, Mercators Tryckeri, Helsinki, 1958 ; Gording L., Zadacha Koshi dlya giperbolicheskikh uravnenii, Inostr. lit., M., 1961, 120 pp. | MR

[6] Trenogin V. A., Functional analysis, Nauka, Fizmatlit, 1980, 484 pp.