Recursive parametrical identification of~multidimensional linear dynamic systems with local autocorrelated noises in input and output signals
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2011), pp. 102-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

The recursive algorithm allowing to receive strongly consistent estimates of parameters of multidimensional on an input linear dynamic systems with locally autocorrelated noise in input and output signals is suggested. Numerical examples are included to illustrate the effectiveness of the proposed algorithm.
Keywords: recursive identification, linear dynamic system, stochastic approximation, errors in variables, least square method.
@article{VSGTU_2011_4_a12,
     author = {D. V. Ivanov and O. A. Katsyuba},
     title = {Recursive parametrical identification of~multidimensional linear dynamic systems with local autocorrelated noises in input and output signals},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {102--109},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a12/}
}
TY  - JOUR
AU  - D. V. Ivanov
AU  - O. A. Katsyuba
TI  - Recursive parametrical identification of~multidimensional linear dynamic systems with local autocorrelated noises in input and output signals
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 102
EP  - 109
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a12/
LA  - ru
ID  - VSGTU_2011_4_a12
ER  - 
%0 Journal Article
%A D. V. Ivanov
%A O. A. Katsyuba
%T Recursive parametrical identification of~multidimensional linear dynamic systems with local autocorrelated noises in input and output signals
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 102-109
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a12/
%G ru
%F VSGTU_2011_4_a12
D. V. Ivanov; O. A. Katsyuba. Recursive parametrical identification of~multidimensional linear dynamic systems with local autocorrelated noises in input and output signals. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2011), pp. 102-109. http://geodesic.mathdoc.fr/item/VSGTU_2011_4_a12/

[1] Söderström T., Mahata K., “On instrumental variable and total least squares approaches for identification of noisy systems”, Int. J. Control, 75:6 (2002), 381–389 | DOI | MR | Zbl

[2] Thil S., Söderström T., Garnier H., “On instrumental variable-based methods for errors-in-variables model identification”, Proc. 17th IFAC World Congress, Seoul, Korea, World Congress, 17 (Part 1), 2008, 426–431 | DOI

[3] Ikenoue M., Kanae Z.-J., Wada K., “Identification of noisy input-output system using bias-compensated least squares method”, Proc. 16th IFAC World Congress on Automatic Control, Prague, Czech Republic, World Congress, 16 (Part 1), 2005, 803–808 | DOI

[4] Ekman M., Hong M., Wada K., Söderström T., “A separable nonlinear least-squares approach for identification of linear systems with errors in variables”, Proc. 14th IFAC Symposium on System Identification, Newcastle, Australia, World Congress, 14 (Part 1), 2006, 173–183 | DOI

[5] Katsyuba O. A., Identification theory of stochastic dynamic systems under uncertainty conditions, SamGUPS, Samara, 2008, 119 pp.

[6] Derevitskiy D. P., Fradkov A. L., Applied Theory of Discrete Adaptive Control Systems, Nauka, Moscow, 1991, 215 pp. | MR

[7] Chen H. F., Stochastic Approximation and Its Applications, Kluwer, Dordrecht, 2002, 357 pp. | MR

[8] Chen H. F., “A Unified Approach to Recursive System Identification”, Proc. 17th IFAC Symposium on System Identification, Saint-Malo, France, World Congress, 17 (Part 1), 2009, 420–425 | DOI

[9] Bellman R., Introduction to Matrix Analysis, Nauka, Moscow, 1989, 376 pp. | MR