Maximal order of accuracy of $(m, 1)$-methods for solving stiff problems
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2011), pp. 100-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate $(m, 1)$-methods for solving stiff problems in which the right part of system of the differential equations is calculated one times on each step. It is shown that the maximal order of accuracy of the $L$-stability $(m, 1)$-method is equal to two, and the method of the maximal order is constructed.
Keywords: stiff problems, Rosenbrock schemes, k)$-methods, $A$-stability, $L$-stability.
Mots-clés : $(m
@article{VSGTU_2011_3_a9,
     author = {E. A. Novikov},
     title = {Maximal order of accuracy of $(m, 1)$-methods for solving stiff problems},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {100--107},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a9/}
}
TY  - JOUR
AU  - E. A. Novikov
TI  - Maximal order of accuracy of $(m, 1)$-methods for solving stiff problems
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 100
EP  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a9/
LA  - ru
ID  - VSGTU_2011_3_a9
ER  - 
%0 Journal Article
%A E. A. Novikov
%T Maximal order of accuracy of $(m, 1)$-methods for solving stiff problems
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 100-107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a9/
%G ru
%F VSGTU_2011_3_a9
E. A. Novikov. Maximal order of accuracy of $(m, 1)$-methods for solving stiff problems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2011), pp. 100-107. http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a9/

[1] Rosenbrock H. H., “Some general implicit processes for the numerical solution of differential equations”, Computer, 5:4 (1963), 329–330 | DOI | MR | Zbl

[2] Hairer E., Wanner G., Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics, 14, Springer-Verlag, Berlin, 1996, 614 pp. ; Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhëstkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp. | DOI | MR | Zbl

[3] Novikov E. A., Dvinskiy A. L., “Freezing of the Jacobi matrix in $(3, 2)$-method of solving stiff systems”, Joint issue of “Computational Technologies” and “Regional Bulletin of the East”, Proceedings of International Conference “Computational and Informational Technologies for Science, Engineering and Education”. Part II, Novosibirsk, Almaty, Ust'–Kamenogorsk, 2003, 272–278

[4] Novikov E. A., Shitov Yu. A., Shokin Yu. I., “One-step noniterative methods for solving stiff systems”, Soviet Math. Dokl., 38:1 (1989), 212–216 | MR | Zbl

[5] Novikov E. A., Explicit methods for stiff systems, Nauka, Novosibirsk, 1997, 195 pp. | MR