Maximal order of accuracy of $(m, 1)$-methods for solving stiff problems
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2011), pp. 100-107

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate $(m, 1)$-methods for solving stiff problems in which the right part of system of the differential equations is calculated one times on each step. It is shown that the maximal order of accuracy of the $L$-stability $(m, 1)$-method is equal to two, and the method of the maximal order is constructed.
Keywords: stiff problems, Rosenbrock schemes, k)$-methods, $A$-stability, $L$-stability.
Mots-clés : $(m
@article{VSGTU_2011_3_a9,
     author = {E. A. Novikov},
     title = {Maximal order of accuracy of $(m, 1)$-methods for solving stiff problems},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {100--107},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a9/}
}
TY  - JOUR
AU  - E. A. Novikov
TI  - Maximal order of accuracy of $(m, 1)$-methods for solving stiff problems
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 100
EP  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a9/
LA  - ru
ID  - VSGTU_2011_3_a9
ER  - 
%0 Journal Article
%A E. A. Novikov
%T Maximal order of accuracy of $(m, 1)$-methods for solving stiff problems
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 100-107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a9/
%G ru
%F VSGTU_2011_3_a9
E. A. Novikov. Maximal order of accuracy of $(m, 1)$-methods for solving stiff problems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2011), pp. 100-107. http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a9/