Investigation of human coronary arteries and heart ventricles mode of deformation and haemodynamics
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2011), pp. 79-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mechanical properties of coronary arteries and heart tissues, computer 3D models of CA and heart ventricles were investigated. Numerical analysis of coronary arteries and heart ventricles mode of deformation and haemodynamics was made. The material of the arteries and heart tissue was assumed as linear isotropic, the blood as a Newtonian fluid. Comparative analysis of numerical data for cases of spatially unfixed coronary arteries and fixed coronary arteries of passive myocardium and for pathological and healthy heart ventricles was conducted.
Keywords: left (right) ventricle, coronary arteries, haemodynamics, mode of deformation, finite-element analysis
Mots-clés : aneurism.
@article{VSGTU_2011_3_a7,
     author = {A. A. Golyadkina and I. V. Kirillova and O. A. Schuchkina},
     title = {Investigation of human coronary arteries and heart ventricles mode of deformation and haemodynamics},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {79--88},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a7/}
}
TY  - JOUR
AU  - A. A. Golyadkina
AU  - I. V. Kirillova
AU  - O. A. Schuchkina
TI  - Investigation of human coronary arteries and heart ventricles mode of deformation and haemodynamics
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 79
EP  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a7/
LA  - ru
ID  - VSGTU_2011_3_a7
ER  - 
%0 Journal Article
%A A. A. Golyadkina
%A I. V. Kirillova
%A O. A. Schuchkina
%T Investigation of human coronary arteries and heart ventricles mode of deformation and haemodynamics
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 79-88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a7/
%G ru
%F VSGTU_2011_3_a7
A. A. Golyadkina; I. V. Kirillova; O. A. Schuchkina. Investigation of human coronary arteries and heart ventricles mode of deformation and haemodynamics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2011), pp. 79-88. http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a7/

[1] Opie L. H., Heart Physiology: from cell to circulation, Lippincott, Williams Wilkins, Philadelphia, 2003, 648 pp.

[2] Berry J. L., Santamarina A., Moore J. E., Roychowdhury S., Routh W. D., “Experimental and Computational Flow Evaluation of Coronary Stents”, Ann. Biomed. Eng., 28:4 (2000), 386–398 | DOI

[3] Gijsen F. J. H., Wentzel J. J., Thury A., Mastik F., Schaar J. A., Schuurbiers J. C. H., Slager C. J., van der Giessen W. J., de Feyter P. J., van der Steen A. F. W., Serruys P. W., “Strain distribution over plaques in human coronary arteries relates to shear stress”, Am. J. Physiol. Heart Circ. Physiol., 295:4 (2008), 1608–1614 | DOI

[4] Qiu Y., Tarbell J. M., “Numerical Simulation of Pulsatile Flow in a Compliant Curved Tube Model of a Coronary Arter”, J. Biomech. Eng., 122:1 (2000), 77, 9 pp. | DOI

[5] Zeng D., Boutsianis E., Ammann M., Boomsma K., Wildermuth S., Poulikakos D., “A Study on the Compliance of a Right Coronary Artery and Its Impact on Wall Shear Stress”, J. Biomech. Eng., 130:4 (2008), 041014, 11 pp. | DOI

[6] Ramaswamy S. D., Vigmostad S. C., Wahle A., Lai Y.-G., Olszewski M. E., Braddy K. C., Brennan T. M. H., Rossen J. D., Sonka M., Chandran K. B., “Fluid Dynamic Analysis in a Human Left Anterior Descending Coronary Artery with Arterial Motion”, Ann. Biomed. Eng., 32:12 (2004), 1628–1641 | DOI

[7] Santamarina A., Weydahl E., Siegel J. M., Moore J. E., “Computational Analysis of Flow in a Curved Tube Model of the Coronary Arteries: Effects of Time-varying Curvature”, Ann. Biomed. Eng., 26:6 (1998), 944–954 | DOI

[8] Migliavacca F., Balossino R., Pennati G., Dubini G., Hsia T. Y., de Leval M. R., Bove E. L., “Multiscale modelling in biofluidynamics: Application to reconstructive paediatric cardiac surgery”, J. Biomech., 39:6 (2006), 1010–1020 | DOI

[9] Lagana K., Balossino R., Migliavacca F., Pennati G., Bove E. L., de Leval M. R., Dubini G., “Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation”, J. Biomech, 38:5 (2005), 1129–1141 | DOI

[10] Kim H. J., Figueroa C. A., Hughes T. J. R., Jansen K. E., Taylor C. A., “Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow”, Comput. Methods Appl. Mech. Eng., 198:45–46 (2009), 3551–3566 | DOI | MR | Zbl

[11] Vignon–Clementel I. E., Figueroa C. A., Jansen K. E., Taylor C. A., “Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries”, Comput. Methods Appl. Mech. Eng., 195:29–32 (2006), 3776–3796 | DOI | MR | Zbl

[12] Vignon–Clementel I. E., Figueroa C. A., Jansen K. E., Taylor C. A., “Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries”, Comput. Methods Biomech. Biomed. Eng., 13:5 (2010), 625–640 | DOI

[13] Kim H. J., Vignon–Clementel I. E., Figueroa C. A., LaDisa J. F., Jansen K. E., Feinstein J. A., Taylor C. A., “On Coupling a Lumped Parameter Heart Model and a Three-Dimensional Finite Element Aorta Model”, Ann. Biomed. Eng., 37:11 (2009), 2153–2169 | DOI

[14] Göktepe S., Abilez O. J., Kuhl E., “A generic approach towards finite growth with examples of athlete's heart, cardiac dilation, and cardiac wall thickening”, J. Mech. Phys. Solids, 58:10 (2010), 1661–1680 | DOI | MR | Zbl

[15] Schwaiger M., Ziegler S. I., Nekolla S. G., “PET/CT challenge for the non-invasive diagnosis of coronary artery disease”, European Journal of Radiology, 73:3 (2010), 494–503 | DOI

[16] Sun A., Fan Y., Deng X., “Numerical Study of Hemodynamics at Coronary Bifurcation with and without Swirling Flow”, $6th$ World Congress of Biomechanics (August 1–6, 2010, Singapore), IFMBE Proceedings, 31, 2010, 1428–1430 | DOI

[17] Kim H. J., Vignon–Clementel I. E., Coogan J. S., Figueroa C. A., Jansen K. E., Taylor C. A., “Patient-Specific Modeling of Blood Flow and Pressure in Human Coronary Arteries”, Ann. Biomed. Eng., 38:10 (2010), 3195–3209 | DOI

[18] Ostrovskiy Yu. P., Heart surgery, A guide, Med. Lit., Moscow, 2007, 576 pp.

[19] Avaliani V. M., Chervov I. I., Shobnin A. N., Coronary surgery with multifocal atherosclerosis, Universum, Moscow, 2005, 384 pp.